b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AK\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AK\cdot AC\)
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB
Cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E là hình chiếu của H lên AB và AC biết AB=6 ,BC =10
a) Tính AD/AE
b) Tính góc ADE
1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
cho tam giác ABC vuông tại A, đường cao AH .Gọi D,E là hình chiếu của H, trên AB và AC . Biết AH =4cm, BC= 10 cm ,diện tích tứ giác ADHE là ?
Cho \(\Delta ABC\) vuông tại A, đường cao AH. Gọi I,K lần lượt là hình chiếu của H trên cạnh AB, AC
a) Cm: AI.AB=AK.AC và 2 tam giác AIK, ACB đồng dạng
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.
Cho tam giác ABC ( gốc A = 90 độ đường Cao AH, HB = 2cm, HC= 8cm
a) Tính AH, AB, AC và gốc C ( gốc C làm tròn đến độ)
b) Gọi E là hình chiếu của H trên AC, chứng minh rằng HB.HC = AE.AB