Bài 3: Giải hệ phương trình bằng phương pháp thế

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Anh Phạm

Cho tam giác ABC vuông tại A (AC > AB). Trên đoạn AC lấy điểm M và vẽ đường tròn đường kính MC. Tia BM cắt đường tròn tại D. Đường thẳng AD cắt đường tròn tại S.

a.      C/m: ABCD là tứ giác nội tiếp.

b.      C/m: CA là phân giác của góc SCB.

c.      Gọi H là giao điểm thứ hai của đường tròn đường kính MC với BC. C/m: các đường thẳng AB; MH; CD đồng qui.

d.      Biết CM = a; Cˆ = 300. Tính diện tích hình quạt OMmH ( với cung MmH là cung nhỏ.)

e.      C/m : M là tâm đường tròn nội tiếp tam giác ADH.

f.       ABˆC = 720 ; BCˆD = 73o tính các góc của tam giác AHD

g.      Trong trường hợp DA là tiếp tuyến của đường tròn đường kính MC thì M ở vị trí nào?

Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 20:05

a: góc MDC=1/2*sđ cung MC=90 độ

=>góc BDC=90 độ

Xét tứ giác ABCD có

góc CAB=góc CDB=90 độ

=>ABCD nội tiếp

b: ABCD nội tiếp

=>góc BCA=góc BDA

=>góc BCA=góc SCA

=>CA là phân giác của góc SCB

c: Gọi N là giao của MH với AB

góc MHC=1/2*180=90 độ

=>NH vuông góc BC

Xét ΔCBN có

NH,CA là đường cao

NH cắt CA tại M

=>M là trực tâm

=>BM vuông góc CN

=>C,D,N thẳng hàng

=>MH,CD,BA đồng quy


Các câu hỏi tương tự
Nguyên Anh Phạm
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thanh Nguyễn
Xem chi tiết
Phương Anh Nguyễn Thị
Xem chi tiết
Phương Anh
Xem chi tiết
Phương Anh Nguyễn Thị
Xem chi tiết
Nguyên Anh Phạm
Xem chi tiết
phạm thị minh yến
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết