\(\dfrac{MA}{MB}\cdot\dfrac{CB}{CD}\cdot\dfrac{ID}{IA}=1\)
=>MA/MB*1/4*2=1
=>MA/MB=2
\(\dfrac{MA}{MB}\cdot\dfrac{CB}{CD}\cdot\dfrac{ID}{IA}=1\)
=>MA/MB*1/4*2=1
=>MA/MB=2
Bài 1:Cho tam giác ABC có M,I lần lượt là trung điểm của BC,AM. Gọi K là giao điểm của CI và AB. Tính \(\dfrac{AK}{AB}\)
Bài 2: Cho hình bình hành ABCD. Gọi M,N lần lượt là các điểm thuộc cạnh AB,AD sao cho \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AD}\)=k
a. Chứng minh rằng AC,BN,DM đồng quy
b. Gọi E,F lần lượt là giao điểm của MC và AD;NC và AB
Chứng minh rằng EF// MN. Tính \(\dfrac{EF}{MN}\)
Cho ▲ ABC, đường trung tuyến AD. Gọi K là điểm ϵ AD sao cho \(\dfrac{AK}{KD}\)=\(\dfrac{1}{2}\). Gọi E là giao điểm của BK và AC. Tính tỉ số của \(\dfrac{AE}{EC}\)
giúp em giải bài này vs ạ em đag cần gấp em c.ơn trước ạ
Cho tam giác ABC, AD là đường trung tuyến. Gọi M là điểm tùy ý thuộc khoảng BD. Lấy E thuộc AB và F thuộc AC sao cho ME//AC; MF//AB . Gọi H là giao điểm MF và AD. Đường thẳng qua B song song với EH cắt MF tại K. Đường thẳng AK cắt BC tại I. Tính tỉ số IB/ID
Cho tam giác ABC ,I là điểm thuộc D thuộc tam giác đó AI,BI,CI cắt BC,CA,AD tại M,N,P.CMR:
\\(\dfrac{MB}{MC}.\dfrac{NC}{NA}\dfrac{DA}{DB}\)
1.Cho tam giác ABC, D là điểm trên AC sao cho AB=CD. Gọi M,N lần lượt là trung điểm của AD, BC. Chúng minh rằng MN song song với phân giác của góc BAC.
2. Cho tam giác ABC, đường phân giác AD, trung tuyến AM. Đường thẳng đi qua D, song song với AB, cắt AM tại I. BI cắt AC tại E. Chứng minh AB=AE.
Lấy P là một điểm thuộc cạnh AD của hình bình hành ABCD sao cho AP = \(\dfrac{1}{5}\)AD. Gọi Q là giao điểm của AC và BP. Chứng minh: AQ=\(\dfrac{1}{6}\)AC
cho tam giác abc có AB=10cm,AC=15cm.AM là đường trung tuyến. trên cạnh AB lấy điểm D sao cho AD=4cm,trên cạnh AC lấy điểm E sao cho CE=9cm. gọi I là giao điểm của DE và trung tuyến am. chứng minh rằng:
a.DE//BC b.I là trung điểm của DE