a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
b: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
Cho tam giác ABC nhọn, ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác AEHF là tứ giác nội tiếp. b) Chứng minh tứ giác ABDE là tứ giác nội tiếp. c) Chứng minh DH là tia phân giác của góc EDF
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H. Tia AO cắt đường tròn tại D . Chứng minh
a) tứ giác AEHF nội tiếp đường tròn
B) tứ giác BHCD là hình bình hành
c) tứ giác BFEc nội tiếp được đường tròn
d) Tam giác AEF ~ tam giác ABC, suy ra AE.AC = AF.AB
Cho ∆ABC nội tiếp đường tròn (O) có các đường cao CE, CF cắt nhau tại H. a, CM: Tứ giác AEHF nội tiếp. CM: Tứ giác BECF nội tiếp. b, Kẻ đường kính AK cắt EF tại I . CM: Tứ giác ICFK nội tiếp.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O vẽ các đường cao AI,BM,CE cắt nhau tại H
a/chứng minh: tứ giác BEMC nội tiếp
b /xác định các tứ giác nội tiếp còn lại
c/ vẽ đường kính AK. Chứng minh: AB.AC=AI.AK
Cho tam giác ABC nhọn, kẻ 2 đường cao BD và CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) CM tứ giác BEDC nội tiếp . c) góc acd = góc aed . d) góc edb =ecb
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
Cho tam giác ABC vuông ở A có AC=5cm và đường cao AH=3cm
1,Tính độ dài CH và CB
2,đường tròn đường kính AH cắt AB và AC theo thứ tự tại E và F.Tứ giác AEHF là hình gì?Vì sao?
3,Chứng minh tứ giác BEFC nội tiếp và EF là tiếp tuyến chung của đường tròn đường kính HB và đường tròn đường kính HC.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, vẽ MI vuông góc với AC. Chứng minh tứ giác MIHC nội tiếp.