a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b:
a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b:
Cho tam giác ABC trung tuyến AM .Chứng minh \(AC^2+AC^2=2AM^2+\dfrac{BC^2}{2}\)
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN//BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
Cho tam giác ABC có góc B=góc C + nội tiếp đường tròn (O;R) đường vuông góc với BC từ B cắt đường tròn O ở T
a)Chứng minh tiếp tuyến của đường tròn O kẻ từ A thì vuông góc BC
b)CHứng minh
c)Giả sử C= tính diện tích tam giác ABC theo R
Cho tam giác ABC cân tại A. BD,CE là đường cao. AB=c, BC=a, AC=b. Chứng minh rằng: \(DE=\dfrac{a\left(2b^2-a^2\right)}{2b^2}\)
1. Cho tam giác ABC vuông tại A, đường cao AH, AH = 12cm, BC = 25cm. Tính BH, HC, AB, AC
2. Tam giác ABC vuông tại B, góc A = 30 độ, AB = a. Tính độ dài các cạnh của tam giác theo a
3. Cho tam giác ABC có 3 góc nhọn
a. CM: sinA + cosA >1
b. Vẽ đường cao AH. CM: AH= BC/(cotgB+cotgC)
c. Biết BC = 12cm, góc B = 60 độ, góc C = 45độ. Tính S tam giác ABC.
4. Cho tam giác ABC có 3 góc nhọn AB=c, AC=b, BC=a.
a. Cmr: a/(sinA) = b/(sinB) = c/(sinC)
b. Biết 2a= b+c. CM: 2sinA = sinB+sinC.
5. Cho tam giác ABC có 3 góc nhọn, AB=c, AC=b, BC=a. Cmr: a^2 = (b^2)+(c^2)-2bc. cosA
6. Cho tam giác ABC có các góc đều nhọn, góc B > góc C, đường cao AH và trung tuyến AM. Đặt góc HAM = α . CM: tg α = (cotgC-cotgB)/2
7. Cho đường tròn tâm O và M là điểm ở ngoài đường tròn. Qua M kẻ tiếp tuyến MA, MB (A, B là tiếp điểm) và một cát tuyến cắt đường tròn tại C, D,
a/ Gọi I là trung điểm của CD. Chứng minh bốn điểm A,B,O,I nằm trên một đường tròn.
b/ AB cắt CD tại E. Chứng minh MA^2=ME.MI
5. Cho tam giác ABC có 3 góc nhọn, AB=c, AC=b, BC=a. Cmr: a^2 = (b^2)+(c^2)-2bc. cosA
6. Cho tam giác ABC có các góc đều nhọn, góc B > góc C, đường cao AH và trung tuyến AM. Đặt góc HAM = α . CM: tg α = (cotgC-cotgB)/2
Cho tam giác ABC cân tại A có các đường cao AH và BK. Chứng minh rằng : \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
MN<BC