Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF cắt nhau tại H. Kẻ đường kính AK của đường tròn O.
a] Chứng minh AEHF nội tiếp
b]Chứng minh BDHF nội tiếp
c]Chứng minh BHCK là hình bình hành
d]Gọi M là trung điểm BC. Chứng minh AH=20M
Giúp mk vs
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
Cho tam giác ABC nhọn nội tiếp đường tròn (o) có 3 đường cao AD;BE;CF cắt nhau tại H. BE cắt đường tròn (o) tại N,gọi M là điểm đối xứng của H qua D
Chứng minh:
a)Tứ giác DHEC;BCEF nội tiếp
b)Tam giác MCN cân
c)EH là phân giác góc DEF
Cho ∆ABC nội tiếp đường tròn (O) có các đường cao CE, CF cắt nhau tại H. a, CM: Tứ giác AEHF nội tiếp. CM: Tứ giác BECF nội tiếp. b, Kẻ đường kính AK cắt EF tại I . CM: Tứ giác ICFK nội tiếp.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O vẽ các đường cao AI,BM,CE cắt nhau tại H
a/chứng minh: tứ giác BEMC nội tiếp
b /xác định các tứ giác nội tiếp còn lại
c/ vẽ đường kính AK. Chứng minh: AB.AC=AI.AK
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) ; H là giao điểm của 3 đường cao AD,BE và CF. a) gọi G,S lần lượt là trung điểm của CB, CH. Cm các tg sau nội tiếp : DHEC, BFEC, FESG và OA⊥EF.
b) gọi I là trung điểm AH. Cm: IE là tiếp tuyến của đường tròn (BEF)
c) Gọi K là giao điểm của DF và BE. Chứng minh BE.KH = BK.HE
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H. Tia AO cắt đường tròn tại D . Chứng minh
a) tứ giác AEHF nội tiếp đường tròn
B) tứ giác BHCD là hình bình hành
c) tứ giác BFEc nội tiếp được đường tròn
d) Tam giác AEF ~ tam giác ABC, suy ra AE.AC = AF.AB