sin A = \(\dfrac{CF}{AC};sinB=\dfrac{CF}{BC}\) . Suy ra : \(\left\{{}\begin{matrix}\dfrac{BC}{sinA}=\dfrac{BC.AC}{CF}\\\dfrac{AC}{sinB}=\dfrac{BC.AC}{CF}\end{matrix}\right.\) \(\Rightarrow\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)
CMTT : \(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\) . Suy ra đpcm