Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạt Dẻ

Cho tam giác ABC có góc B = góc C. Gọi BD và CE là tia phân giác của góc ABC và góc ACB. Gọi I là giao điểm của BD và CE. Chứng minh:

a. BE = CD

b. AB = AC

c. IE = ID , IB = IC

d. AI vuông góc BC

kudo shinichi
9 tháng 1 2017 lúc 23:00

B C A E D I M

\(\widehat{B}\) = \(\widehat{C}\) mà BD là tia p/giác của \(\widehat{B}\), CE là tia p/giác của \(\widehat{C}\)

=> \(\widehat{DBC}\) = \(\widehat{ECB}\) = \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)

a, xét \(\Delta\)CBE và \(\Delta\) BDC có

BC cạnh chung

\(\widehat{ECB}\)=\(\widehat{DBC}\) (cmt)

\(\widehat{B}\) = \(\widehat{C}\) (gt)

=> \(\Delta\)CBE=\(\Delta\)BCD(gcg) => BE = CD

b,\(\Delta\)ABC có \(\widehat{B}\) = \(\widehat{C}\) => \(\Delta\)ABC cân tại A => AB = AC

c,xét \(\Delta\) IBE và \(\Delta\) ICD có

BE = CD (\(\Delta\) CBE = \(\Delta\) BCD)

\(\widehat{IEB}\) = \(\widehat{IDC}\) (\(\Delta\)CBE = \(\Delta\) BCD)

\(\widehat{EBI}\) = \(\widehat{DCI}\) (chỗ mk đánh số 1 đấy)

=> \(\Delta\) IBE = \(\Delta\)ICD(gcg)

=>\(\left\{\begin{matrix}IE=ID\\IB=IC\end{matrix}\right.\)

d,bạn c/minh t/giác AMB= t/giác AMC rồi 2 góc AMB và AMC bằng nhau rồi kề bù nên 2 góc này bằng 900

=>AI \(\perp\) BC

chúc bn học tốt ! hahaleuleu

Kayoko
9 tháng 1 2017 lúc 22:03

Tự vẽ hình nhé, mk k bik đăng ảnh & cx k vẽ đc hình trên máy!!ok

(AI vuông góc với BC tại H nhé!!)

a) Ta có:

\(\widehat{EBI}=\widehat{\frac{ABC}{2}}\) (1)

\(\widehat{DCI}=\widehat{\frac{ACB}{2}}\) (2)

\(\widehat{ABC}=\widehat{ACB}\) (3)

Từ (1), (2) và (3) => \(\widehat{EBI}=\widehat{DCI}\)

Xét \(\Delta BCE\)\(\Delta CBD\), ta có:

\(\widehat{EBI}=\widehat{DCI}\) (cmt)

BC là cạnh chung (gt)

\(\widehat{ABC}=\widehat{ACB}\) (gt)

\(\Rightarrow\Delta BCE=\Delta CBD\left(g.c.g\right)\)

=> BE = CD (2 cạnh tương ứng)

b) \(\widehat{ABC}=\widehat{ACB}\Rightarrow\Delta ABC\) cân tại A => AB = AC

Aki Tsuki
9 tháng 1 2017 lúc 22:24

hinh, bn tự vẽ!

Giải:

a/ Vì góc B = góc C (gt)

=> góc ABD = góc DBC = góc ACE = góc ECB (các góc tạo thành từ 2 tia p/g của 2 góc)

Xét t/g BCD và t/g CBE có:

góc B = góc C (gt)

BC: cạnh chung

góc ECB = góc DBC(cmt)

=> t/g BCD = t/g CBE (g.c.g)

=> BD = CE (2 cạnh tương ứng)

b/ Vì góc B = góc C (gt)

=> t/g ABC cân tại A

=> AB = AC

c/ Xét t/g IEB và t/g IDC có:

góc BIE = góc CID (đối đỉnh)

BE = CD (2 cạnh tương ứng do t/g BCD = t/g CBE)

góc ABD = góc ACE (đã cm)

=> t/g IEB = t/g IDC (g.c.g)

=> IE = ID (2 cạnh tương ứng)

IB = IC (2 cạnh tương ứng)

d/ Kéo dài AI, cắt BC tại H

Xét t/g ABI và t/g ACI có:

AI: cạnh cung

AB = AC (ý b)

IB = IC (ý c)

=> t/g ABI = t/g ACI (c.c.c)

=> góc BAI = góc CAI(2 góc tương ứng)

Xét t/g ABH và t/g ACH có:

AB = AC (ý b)

góc BAI = góc CAI (cmt)

AH: cạnh chung

=> t/g ABH = t/g ACH (c.g.c)

=> góc AHB = góc AHC (2 góc tương ứng)

mà góc AHB + góc AHC = 180o(kề bù)

=> góc AHB = góc AHC = 90o

=> AH _l_ BC

mà AH là đường kéo dài của AI

=> AI _l_ BC

lê thị hương giang
10 tháng 1 2017 lúc 8:08

^ABC

lê thị hương giang
10 tháng 1 2017 lúc 8:17

^ABC


Các câu hỏi tương tự
Đỗ thị như quỳnh
Xem chi tiết
nguyễn ngọc trang
Xem chi tiết
Thánh Lầy
Xem chi tiết
Trần Hương Giang
Xem chi tiết
Cathy Trang
Xem chi tiết
Trần Thị Huệ
Xem chi tiết
Trịnh Thanh Thảo
Xem chi tiết
Nga Nguyen thi
Xem chi tiết
Phạm My Ngọc
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết