Cho tam giác nhọn ABC, có M là trung điểm đoạn thẳng AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD
a) Chứng minh 2 tam giác ABM, CDM bằng nhau
b) Chứng minh Ab song song với CD
c) Gọi N là trung điểm của đoạn thẳng BC, đường thẳng MN cắt AD tại E. Chứng minh E là trung điểm của đoạn thẳng AD
ho tam giác abc cân tại a lấy điểm d thoc ab e thuộc c sao cho AD=AE gọi M là trung điểm của BC
a) CM tam giác MBD=MCE
b) CM tam giác ABD = AME
c) CM DE song song BC
cho tam giác abc, trên tia đối của tia ab,ac lần lượt lấy các điểm d và e sao cho ad = ab và ae = ac
a) chứng minh de//bc
b) gọi m, n lần lượt là trung điểm của bc và de. chứng minh a là trung điểm của mn
Cho tam giác ABC AB = AC M thuộc BC MB = MC chứng minh AM là phân giác AM vuông góc BC Chứng minh AB = aq Chứng minh BK song song AC
Cho tam giác ABC ; trên cạnh AB lấy điểm D sao cho AD =1/3 AB . Qua D kẻ đường thẳng song song với BC cắt AC tại E . So sánh DE với BC
Bài 3: Cho tam giác ABC. Gọi M là trung điểm cạnh BC. Trên tia AM lấy điểm D sao cho AM = MD
a) Chứng minh ∆AMB = ∆DMC.
b) Vẽ AH vuông góc BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh ∆HMA = ∆HME và suy ra ∆MED cân .
c) Gọi K là trung điểm của đoạn thẳng DE. Chứng minh DE song song BC
cho tam giác ABC M là trung điểm của AC kẻ MN song song với CB ( N thuộc AB) Trên CB lấy điểm K sao cho CK= MN
CMR a) tam giác ANM=tam giác MKC
b) AB song song với MK
c0 K là trung điểm của Bc
Cho tam giác ABC có ba góc nhọn và M là trung điểm của BC. Trên tia MA lấy điểm D sao cho M la trung diem cua AD. a) Chứng minh: Tam giác AMC = Tam giác DMB_________________ b) Chứng minh: AB // CD_______________c,Ve CF vuông góc với AB (\(F \in AB\));chung minh \(CF \perp CD\).______________________________d)Ve \(CE \perp DB (E \in DB)\) ;chung minh \(\widehat{FCE} = \widehat{CDE}\) .