Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hán Bình Nguyên

Cho tam giác ABC có A(2;3) , trực tâm H(1;1) , trọng tâm G(2;0) . Tìm tọa đọ điểm B và C

 

Ngoc Anh Thai
10 tháng 4 2021 lúc 22:27

Gọi M là trung điểm của BC, vì G là trọng tâm của tam giác ABC nên \(\overrightarrow{AM}=\dfrac{3}{2}\overrightarrow{AG}\)

Có \(\overrightarrow{AG}=\left(0;-3\right);\overrightarrow{AM}=\left(x_M-2;y_M-3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_M-2=0\\y_M-3=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=2\\y_M=0\end{matrix}\right.\Rightarrow M\left(2;0\right)\)

\(\overrightarrow{AH}=\left(-1;-2\right)\Rightarrow u_{BC}=\left(1;2\right)\\ BC:1.\left(x-2\right)+2.\left(y-0\right)\\ BC:x+2y-2=0\)

Gọi điểm B có tọa độ theo tham số t, tìm điểm C theo tham số t thông qua điểm M. 

Có: \(\overrightarrow{AB}.\overrightarrow{CH}=0\)

Giải phương trình tìm ra t.

Từ đó suy ra tọa độ điểm B và C