1: Xét tứ giác AEHD có góc AEH+góc ADH=180 độ
nên AEHD là tứ giác nội tiếp
2: Xét ΔABD vuông tại D và ΔACE vuong tại E có
góc BAD chung
Do đó: ΔABD đồng dạng với ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
1: Xét tứ giác AEHD có góc AEH+góc ADH=180 độ
nên AEHD là tứ giác nội tiếp
2: Xét ΔABD vuông tại D và ΔACE vuong tại E có
góc BAD chung
Do đó: ΔABD đồng dạng với ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
Cho Δ ABC nội tiếp đường tròn (O) , kẻ các đường cao BD và CE của Δ ABC chúng cắt nhau tại H và cắt đường tròn lần lượt tại I và K a) CM ; tứ giác ADHE , BCDE nội tiếp b) CM : AI = AK c) Đường thẳng DE cắt đường tròn (O) tại hai điểm M , N . CM : AM = AN
Cho tam giác ABC có góc nhọn nội tiếp đường tròn (O). BD , CE cắt nhau tại H. Đường thẳng BD cắt ( O ) tại M. đường thẳng CE cắt ( O ) tại N.a) Chứng minh AE.AB = AD.AC b ) Chứng minh tứ giác BEDC nội tiếp . c ) Chứng minh MN // DE . c ) Chứng minh OA vuông góc ED
Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
Cho tam giác ABC có 3 góc nhọn với các đường cao BD , CE . e) Chứng minh BEDC là tứ giác nội tiếp . f) Chứng minh : AD.AC = AE.AB . g) Kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC . Chứng minh rằng : Ax // ED .
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;R) ; H là giao điểm của 3 đường cao AD,BE và CF. a) gọi G,S lần lượt là trung điểm của CB, CH. Cm các tg sau nội tiếp : DHEC, BFEC, FESG và OA⊥EF.
b) gọi I là trung điểm AH. Cm: IE là tiếp tuyến của đường tròn (BEF)
c) Gọi K là giao điểm của DF và BE. Chứng minh BE.KH = BK.HE
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.