cho tam giác ABC cân tại A . trên tia đối của tía BC lấy điêm D , trên tia đói của tia CB lấy điểm E sao cho BAD = CAE . Kẻ BH vuông góc với AD tại H , kẻ CK vuông góc với AE tại K . Chứng minh rằng :
a) BD=CE
b) BH = CK
c) gọi I là giao điểm của hai đường thẳng HB và CK . Chứng minh rằng AI là tia phân giác của góc BAC
Vẽ hình , càng đầy đủ càng tốt ạ
a: Xét ΔABD và ΔACE có
\(\widehat{BAD}=\widehat{CAE}\)
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
c: Ta có: ΔHDB=ΔKEC
nên \(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{IBC}=\widehat{HBD}\)
và \(\widehat{ICB}=\widehat{KCE}\)
nên \(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
=>IB=IC
Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC