Bài 6: Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoi Nguyen
BÀI 2: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN a/ Chứng minh rằng tam giác AMN là tam giác cân b/ Kẻ BH vuông góc vs AM (H tập hợp con AM), kẻ CK vuông vs AN (K tập hợp con AN). Chứng minh rằng BH = CK c/ CHứng minh rằng AH = AK d/ Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 20:33

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

b) Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN(gt)

\(\widehat{HMB}=\widehat{KNC}\)(hai góc ở đáy trong ΔAMN cân tại A)

Do đó: ΔHBM=ΔKCN(cạnh huyền-góc nhọn)

Suy ra: BH=CK(hai cạnh tương ứng)

c) Ta có: ΔHBM=ΔKCN(cmt)

nên HM=KN(hai cạnh tương ứng)

Ta có: AH+HM=AM(H nằm giữa A và M)

AK+KN=AN(K nằm giữa A và N)

mà AM=AN(cmt)

và HM=KN(cmt)

nên AH=AK(đpcm)

d) Ta có: ΔHBM=ΔKCN(cmt)

nên \(\widehat{HBM}=\widehat{KCN}\)(hai góc tương ứng)

mà \(\widehat{OBC}=\widehat{HBM}\)(hai góc đối đỉnh)

và \(\widehat{OCB}=\widehat{KCN}\)(hai góc đối đỉnh)

nên \(\widehat{OBC}=\widehat{OCB}\)

Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)

nên ΔOBC cân tại O(Định lí đảo của tam giác cân)


Các câu hỏi tương tự
Đặng Quốc Đạt
Xem chi tiết
Lừađảo TV
Xem chi tiết
Thuỷ tina
Xem chi tiết
Nguyễn Diệu Anh
Xem chi tiết
Ngọc Ánh Nguyễn
Xem chi tiết
Hazi
Xem chi tiết
Anni
Xem chi tiết
Hoàng Dương
Xem chi tiết
Cẩm Đặng
Xem chi tiết