a: Xét ΔAKB và ΔAHC có
AK=AH
góc BAK chung
AB=AC
=>ΔAKB=ΔAHC
=>CH=BK
b: Xét ΔOHB và ΔOKC có
góc OHB=góc OKC
HB=KC
góc OBH=góc OCK
=>ΔOHB=ΔOKC
c: ΔOHB=ΔOKC
=>OB=OC
=>AO là trung trực của BC
=>AO vuông góc BC tại I
=>AB>AI
a: Xét ΔAKB và ΔAHC có
AK=AH
góc BAK chung
AB=AC
=>ΔAKB=ΔAHC
=>CH=BK
b: Xét ΔOHB và ΔOKC có
góc OHB=góc OKC
HB=KC
góc OBH=góc OCK
=>ΔOHB=ΔOKC
c: ΔOHB=ΔOKC
=>OB=OC
=>AO là trung trực của BC
=>AO vuông góc BC tại I
=>AB>AI
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh AC, trên tia BM lấy điểm N sao cho M là trung điểm của đoạn BN. Chứng minh:
a) CN vuông góc với AC và CN = AB;
b) AN = BC và AN song song với BC.
Cho tam giác ABC có có AB = AC. Gọi D là trung điểm của cạnh BC. a) Chứng minh rằng : tam giác ABD bằng tam giác ACD b) Trên tia đối của tia DA, lấy điểm M sao cho MD = MA. Chứng minh: AB // CD.
cho tam giác ABC(AB>AC)gọi I là trung điểm của BC.Qua B và C vẽ BK và CH cùng vuông góc với AI (K,H thuộc AI).c/m CK//BH.Giải theo toán 7 và vẽ hình
cho tam giác ABC (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh tam giác ACM= tam giác DBM. b) Kẻ BE vuông góc với AM tại E. Trên tia MD lấy điểm F sao cho M là trung điểm của EF. Chứng minh CF vuông góc với AD. c) Trên tia FB lấy điểm G sao cho B là trung điểm FG. Gọi H là trung điểm của BE. Chứng minh ba điểm G,H,C thẳng hàng
Cho tam giác ABC (Góc BAC <90 độ)Đường cao AH .Gọi E,F lần lượt là điểm đối xứng của H qua AB ;AC,đường thẳng EF cắt AB:AC lần lượt tai M và N.Chứng minh rằng: a, AE=AF b,HA là phân giác của góc MHN c,CM song song với EH d,CM song song với EH ; BN song song với FH
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của cạnh BC.
A) Chứng minh rằng góc B=góc C
b) Chứng minh rằng AH là tia phân giác của góc BAC