Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Diamond

Cho tam giác ABC cân tại A. Kẻ phân giác AD . Trên tia đối tia AB lấy E sao cho AE=AB. Trên phân giác góc CAE lấy F sao cho AF=BD. Cmr:

a.AD vuông góc vs BC

b.AF // BC

c. EF= AD

d. E,F,C thẳng hàng

Lê Hồng Ngọc
16 tháng 8 2018 lúc 18:51

a) Xét tam giác ABC có : AD là tia phân giác của ∠BAC
=> AD cũng là đường cao
=> AD ⊥ BC

Lê Hồng Ngọc
16 tháng 8 2018 lúc 19:31

b)+ Ta có : ∠EAF + ∠FAC + ∠BAC = 180
Mà ∠EAF = ∠FAC (gt)
=> 2∠FAC + ∠BAC = 180 (1)
+ Ta có : ∠ABC + ∠ACB + ∠BAC = 180
Mà ∠ABC = ∠ACB ( tam giác ABC cân tại A)
=> 2∠ACB + ∠BAC = 180 (2)
Từ (1),(2) => 2∠FAC = 2∠ACB
=> ∠FAC = ∠ACB
Mà ∠FAC và ∠ACB là 2 góc so le trong
=> AF // BC

Lê Hồng Ngọc
16 tháng 8 2018 lúc 19:36

c) Xét tam giác EAF và tam giác ABD có :
AE = AB (gt)
∠EAF = ∠ABD ( 2 góc đồng vị )
AF = BD (gt)
=> tam giác EAF = tam giác ABD (c.g.c)
=> EF = AD

Lê Hồng Ngọc
16 tháng 8 2018 lúc 19:45

d) Xét tam giác ABD và tam giác CAF có :
AB = AC (gt)
∠ABD = ∠FAC ( cùng = ∠ACB )
BD = AF (gt)
=> tam giác ABD = tam giác CAF (c.g.c)
=> ∠ADB = ∠CFA
Mà ∠ADB = 90 ( AF ⊥ BC )
=> ∠CFA = 90 (3)
Lại có : ∠ADB = ∠EFA
=> ∠EFA = 90 (4)
Từ (3),(4) => ∠CFA = ∠EFA = 90
=> ∠CFA + ∠EFA = 180
=> E,F,C thẳng hàng


Các câu hỏi tương tự
Xem chi tiết
Phuong Hoang
Xem chi tiết
Chi Linh
Xem chi tiết
Nguyễn Anh Đức
Xem chi tiết
Dương Phan
Xem chi tiết
Nguyễn Nhân Kiệt
Xem chi tiết
Nguyễn Nhân Kiệt
Xem chi tiết
Trần Thị Trâm Anh
Xem chi tiết
Cuc Kac
Xem chi tiết