Bài 21: Cho tam giác ABC cân tại A có các đường cao , ,AD BE CF cắt nhau tại H. Chứng minh:
a) Bốn điểm B,D,H,F cùng thuộc một đường tròn. Xác định tâm I
b) Bốn điểm A,F,C,D cùng thuộc một đường tròn có tâm là K
c*) IK đi qua trung điểm của FD
cho hình thoi ABCD có góc C=60°. gọi D là giao điểm AC và BD. Gọi E,F,G,H lần lượt là trung điểm AB,BC,CD,DA. Chứng minh rằng các điểm E,B,F,G,D,H cùng nằm trên một đường tròn
1) cho hình thoi ABCD có góc C=60°. gọi D là giao điểm AC và BD. Gọi E,F,G,H lần lượt là trung điểm AB,BC,CD,DA. Chứng minh rằng các điểm E,B,F,G,D,H cùng nằm trên một đường tròn
Cho tam giác ABC( 5c A>90 d hat o ) . Gọi D,E,F theo thứ tự là chân các đường cao kẻ từ A,B,C. Chứng minh: a) A, D, B, E cùng thuộc một đường tròn. b) A,D,C,F cùng thuộc một đường tròn. c) B, C, E, F cùng thuộc một đường tròn .
2/ Cho tam giác ABC nhọn nội tiếp trong đường tròn (O;R). Gọi H là giao điểm của 2 đường cao BE và CF.
a) C/m 4 điểm A,E,H,F cùng thuộc một đường tròn. Xác định tâm K của đường tròn đi qua 4 điểm A,E,H,F
b) C/m \(\widehat{KEI}\) =90o
Cho tam giác ABC vuông tại A, đường cao AH. Từ M là điểm bất kỳ trên cạnh BC.
Kẻ MD AB,ME AC . Chứng minh 5 điểm A,D,M,H,E cùng nằm trên một đường tròn.
Cho tam giác ABC vuông tại A,có M là trung điểm của BC. a) chứng minh các điểm A,B,C cùng nằm trên đường tròn M b) biết AB =6cm,BC=8cm.Tính bán kính đường
Bài 118. Cho ∆ABC nhọn. Các đường cao AD, BE và CF của tam giác
cắt nhau tại H.
a) Chứng minh bốn điểm A, E, H và F cùng thuộc một đường tròn.
Xác định tâm K của đường tròn đó.
b) Chứng minh bốn điểm B, E, F và C cùng thuộc một đường tròn có
tâm là I.
c) Chứng minh góc KEI = 90 độ.
d) Chứng minh KI vuông FE
cho Tam giác nhọn ABC, kẻ các đường cao AD,BÉ,CF Cm:4 điểm thuộc một đường tròn: 1) A,F,D,C 2)A,E,D,B 3) gọi H là giải điểm của 3 đường cao Cm: A,F,H,E 4) E,H,D,C 5) E,H,D,B (Vẽ thêm hình càng tốt ạ)