Bài 6: Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kim Chi Đỗ

cho tam giác ABC cân tại A , có AH là đường cao.                                             a) CMR : AH là tia phân giác cua góc BAC .                                                       b) Gọi E là trung điểm của AC , F là trung điểm của AB , CMR : BE=CF.           c) CMR: EF // BC .

Nguyễn Lê Phước Thịnh
5 tháng 1 2021 lúc 21:14

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

mà tia AH nằm giữa hai tia AB,AC

nên AH là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: \(AF=BF=\dfrac{AB}{2}\)(F là trung điểm của AB)

\(AE=CE=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên BF=CE=AF=AE

Xét ΔBFC và ΔCEB có 

BF=CE(cmt)

\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔBFC=ΔCEB(c-g-c)

⇒CF=BE(hai cạnh tương ứng)

c) Xét ΔAFE có AF=AE(cmt)

nên ΔAFE cân tại A(Định nghĩa tam giác cân)

\(\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAFE cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AFE}=\widehat{ABC}\)

mà \(\widehat{AFE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên FE//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Thịnh Gia Vân
5 tháng 1 2021 lúc 21:15

undefined


Các câu hỏi tương tự
ASOC
Xem chi tiết
Vương Đình Vang
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết
Thu Thảo
Xem chi tiết
Têrêsa Ly
Xem chi tiết
Cuộc sống tẻ nhạt
Xem chi tiết
Thân Bảo Khôi
Xem chi tiết
Kim Jeese
Xem chi tiết
Ngọc Ánh Nguyễn
Xem chi tiết