a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
mà tia AH nằm giữa hai tia AB,AC
nên AH là tia phân giác của \(\widehat{BAC}\)(đpcm)
b) Ta có: \(AF=BF=\dfrac{AB}{2}\)(F là trung điểm của AB)
\(AE=CE=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên BF=CE=AF=AE
Xét ΔBFC và ΔCEB có
BF=CE(cmt)
\(\widehat{FBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)
BC chung
Do đó: ΔBFC=ΔCEB(c-g-c)
⇒CF=BE(hai cạnh tương ứng)
c) Xét ΔAFE có AF=AE(cmt)
nên ΔAFE cân tại A(Định nghĩa tam giác cân)
⇒\(\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAFE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AFE}=\widehat{ABC}\)
mà \(\widehat{AFE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên FE//BC(Dấu hiệu nhận biết hai đường thẳng song song)