kẻ DK//CE
góc DKB=góc ACB
=>góc DKB=góc DBK
=>DK=DB=CE
Xét tứ giác DKEC có
DK//EC
DK=EC
=>DKEC là hình bình hành
=>DE cắt KC tại trung điểm của mỗi đường
=>I là trung điểm của KC
=>B,I,C thẳng hàng
kẻ DK//CE
góc DKB=góc ACB
=>góc DKB=góc DBK
=>DK=DB=CE
Xét tứ giác DKEC có
DK//EC
DK=EC
=>DKEC là hình bình hành
=>DE cắt KC tại trung điểm của mỗi đường
=>I là trung điểm của KC
=>B,I,C thẳng hàng
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CD. Gọi I là giao điểm của BE và CD
a) Chứng minh rằng IB = IC, ID = IE
b) Chứng minh rằng BC song song với DE
c) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm A, M, I thẳng hàng
Bài 2 (4 điểm) Cho tam giác ABC cân tại C. Trên cạnh CA lấy điểm E, trên tia đối của tia BC lấy điểm D sao cho AE= BD . Kẻ EI, DJ vuông góc với AB (I, J thuộc đường thẳng AB). 1, Chứng minh tam giác AEI bằng tam giác BDJ. 2, Gọi M là giao điểm của AB và ED, chứng minh tam giác EIM bằng tam giác DJM. 3, Khi góc ACB bằng 90 và CA bằng 6cm, tính AB (trường hợp này chỉ dùng cho câu 3). 4, Đường thẳng vuông góc với CA tại A cắt tia phân giác của góc ACB tại N, chứng minh rằng: đường thẳng NM là đường trung trực của đoạn thẳng DE
Cho tam giác ABC . M là trung điểm BC . Trên tia đối của tia MA lấy điểm D sao cho MD=MA. C/m
a) tam giác AMB = tam giác DMC
b)Trên tia DC lấy điểm E sao cho C là trung điểm của đoạn thẳng DE. Chứng minh: TG ABC = TG CEA
c) Gọi I là trung điểm của đoạn thẳng AC. Chứng minh ba điểm B, I, E thẳng hàng
Mn giúp mình với
Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA. a) Chứng minh rằng: tam giác AMB = tam giác KMC b) Trên cạnh AB, CK lần lượt lấy điểm E, F sao cho BE = CF. Chứng minh rằng: Ba điểm E, M, F thẳng hàng.( giúp mình với T^T)
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh rằng IB = IC, ID = IE.
b) Chứng minh rằng BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.
Cho tam giác ABC cân tại A. Gọi M là trung điểm của BC,D là trung điểm của AC.
a) Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Chứng minh rằng AE song song với BC.
b) Trên tia đối của tia AB lấy điểm Fsao cho AF=AB. Chứng minh rằng góc FAC= 2 góc ABC
c) Chứng minh rằng AD song song với EF và AD = 1/2 EF
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của DE và BC. Qua E vẽ đường thẳng song song với AB, cắt BC tại F. a) Chứng minh: tam giácBDI = tam giác FEI. b) Chứng minh I là trung điểm của DE.
giúp mk vs __#camon__
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
CMR
a, I là trung điểm của DE
b, Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC vuông tại A,trên tia đối CA lấy điểm D sao cho C là trung điểm của đoạn thẳng AD.Qua c vẽ đương vuông góc với AD cắt đoạn thẳng BD tại E.
a/ Chứng minh tam ECA bằng tam giác ECA
b/ Chứng minh tam giác AEB cân
c/ Gọi I là trung điểm của AB.Chứng minh EI song song với AD