Bài 4: Công thức nghiệm của phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

Cho pt \(x^2-\left(m-5\right)x+m-7=0\) (x là ẩn, m là tham số)

a) Tìm giá trị của m để pt có 1 nghiệm bằng 2. Tính nghiệm còn lại

b) Chứng tỏ pt luôn có nghiệm với mọi m

c) Tính giá trị của m để PT có 2 nghiệm cùng dương

Akai Haruma
23 tháng 3 2019 lúc 22:45

Lời giải:

a) PT có nghiệm $x=2$

\(\Leftrightarrow 2^2-(m-5).2+m-7=0\)

\(\Leftrightarrow m-7=0\)

\(\Leftrightarrow m=7\)

Với $m=7$ ta viết lại PT thành: \(x^2-2x=0\)

\(\Leftrightarrow x(x-2)=0\Rightarrow x=0\) là nghiệm còn lại

b)

Ta thấy \(\Delta=(m-5)^2-4(m-7)=m^2-14m+53=(m-7)^2+4\geq 4>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có nghiệm (2 nghiệm pb) với mọi $m$ thực.

c)

Theo định lý Vi-et, với $x_1,x_2$ là nghiệm, để PT có 2 nghiệm dương thì \(\left\{\begin{matrix} x_1+x_2=m-5>0\\ x_1x_2=m-7>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>5\\ m>7\end{matrix}\right.\Leftrightarrow m> 7\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Ngưu Kim
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết