Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ph Khánh Ly

Cho PT : x2 - 2mx + m -1 = 0

a. Chứng minh PT luôn có 2 nghiệm phân biệt

b. Với giá trị của của m thì PT có 2 nghiệm x1 , x2 thỏa mãn \(\sqrt{x_1}+\sqrt{x_2}\) = 2

Akai Haruma
5 tháng 4 2018 lúc 17:41

Lời giải:

a)

Có: \(\Delta=(-2m)^2-4(m-1)=4m^2-4m+4=(2m-1)^2+3\)

Vì \((2m-1)^2\geq 0, \forall m\in\mathbb{R}\Rightarrow \Delta\geq 3>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt .

b)

Áp dụng định lý Viete cho pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m-1\end{matrix}\right.(*)\)

Vì \(\sqrt{x_1}; \sqrt{x_2}\) xác định nên \(\left\{\begin{matrix} x_1+x_2=2m\geq 0\\ x_1x_2=m-1\geq 0\end{matrix}\right.\Leftrightarrow m\geq 1\)

Khi đó, dựa vào $(*)$: \(\sqrt{x_1}+\sqrt{x_2}=2\)

\(\Rightarrow x_1+x_2+2\sqrt{x_1x_2}=4\) (bình phương hai vế)

\(\Rightarrow 2m+2\sqrt{m-1}=4\)

\(\Leftrightarrow m+\sqrt{m-1}=2\)

\(\Leftrightarrow \sqrt{m-1}=2-m\) \((\rightarrow m\leq 2)\)

\(\Rightarrow m-1=(2-m)^2\) (bình phương hai vế)

\(\Leftrightarrow m^2-5m+5=0\)

\(\Leftrightarrow \left[\begin{matrix} m=\frac{5+\sqrt{5}}{2}(\text{không thỏa mãn do m}\leq 2)\\ m=\frac{5-\sqrt{5}}{2}(t/m)\end{matrix}\right.\)

Vậy \(m=\frac{5-\sqrt{5}}{2}\)


Các câu hỏi tương tự
Limited Edition
Xem chi tiết
Nguyễn Tuấn Duy
Xem chi tiết
Uyên
Xem chi tiết
Xxyukitsune _the_moonwol...
Xem chi tiết
Maneki Neko
Xem chi tiết
khát vọng
Xem chi tiết
Uyên
Xem chi tiết
Nguyên
Xem chi tiết
Cạc NGU
Xem chi tiết