Lời giải:
a)
Có: \(\Delta=(-2m)^2-4(m-1)=4m^2-4m+4=(2m-1)^2+3\)
Vì \((2m-1)^2\geq 0, \forall m\in\mathbb{R}\Rightarrow \Delta\geq 3>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt .
b)
Áp dụng định lý Viete cho pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m-1\end{matrix}\right.(*)\)
Vì \(\sqrt{x_1}; \sqrt{x_2}\) xác định nên \(\left\{\begin{matrix} x_1+x_2=2m\geq 0\\ x_1x_2=m-1\geq 0\end{matrix}\right.\Leftrightarrow m\geq 1\)
Khi đó, dựa vào $(*)$: \(\sqrt{x_1}+\sqrt{x_2}=2\)
\(\Rightarrow x_1+x_2+2\sqrt{x_1x_2}=4\) (bình phương hai vế)
\(\Rightarrow 2m+2\sqrt{m-1}=4\)
\(\Leftrightarrow m+\sqrt{m-1}=2\)
\(\Leftrightarrow \sqrt{m-1}=2-m\) \((\rightarrow m\leq 2)\)
\(\Rightarrow m-1=(2-m)^2\) (bình phương hai vế)
\(\Leftrightarrow m^2-5m+5=0\)
\(\Leftrightarrow \left[\begin{matrix} m=\frac{5+\sqrt{5}}{2}(\text{không thỏa mãn do m}\leq 2)\\ m=\frac{5-\sqrt{5}}{2}(t/m)\end{matrix}\right.\)
Vậy \(m=\frac{5-\sqrt{5}}{2}\)