Lời giải:
Ta có: \(x^3-m(x+2)+8=0\)
\(\Leftrightarrow (x^3+8)-m(x+2)=0\)
\(\Leftrightarrow (x+2)(x^2-2x+4)-m(x+2)=0\)
\(\Leftrightarrow (x+2)(x^2-2x+4-m)=0\)
Dễ thấy PT có nghiệm \(x=-2\)
Do đó để có 3 nghiệm pb thì \(x^2-2x+4-m=0\) phải có hai nghiệm phân biệt khác $-2$
Điều này xảy ra khi mà:
\(\left\{\begin{matrix} (-2)^2-2(-2)+4-m\neq 0\\ \Delta'=1-(4-m)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 12-m\neq 0\\ m-3>0\end{matrix}\right.\Leftrightarrow m> 3; m\neq 12\)
b)
Nghiệm thứ nhất của PT là \(x_1=-2\)
Hai nghiệm còn lại $x_2,x_3$ được xác định theo hệ thức Viete như sau:
\(\left\{\begin{matrix} x_2+x_3=2\\ x_2x_3=4-m\end{matrix}\right.\)
Khi đó:
\(x_1^3+x_2^3+x_3^3=-8+(x_2+x_3)^3-3x_2x_3(x_2+x_3)\)
\(=-8+8-3(4-m).2=6(m-4)\)
Và: \(3x_1x_2x_3=3(-2)(4-m)=6(m-4)\)
Do đó \(x_1^3+x_2^3+x_3^3=3x_1x_2x_3\) (đpcm)