\(\Delta=25-4\left(m-3\right)=37-4m\ge0\Rightarrow m\le\frac{37}{4}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-3\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm nên:
\(x_1^2-5x_1+m-3=0\Leftrightarrow x_1^2=5x_1-m+3\)
Áp dụng:
\(x_1^2-2x_1x_2+3x_2=1\)
\(\Leftrightarrow5x_1-m+3-2\left(m-3\right)+3x_2=1\)
\(\Leftrightarrow5x_1+3x_2=3m-8\)
Kết hợp Viet ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=5\\5x_1+3x_2=3m-8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m-23}{2}\\x_2=\frac{33-3m}{2}\end{matrix}\right.\)
Mà \(x_1x_2=m-3\Leftrightarrow\left(\frac{3m-23}{2}\right)\left(\frac{33-3m}{2}\right)=m-3\)
\(\Leftrightarrow9m^2-164m+747=0\Rightarrow\left[{}\begin{matrix}m=\frac{83}{9}\\m=9\end{matrix}\right.\) (đều thỏa mãn)