Trong mặt phẳng tọa độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn: (x1+1)(x2+1)=0
Bài 1: Cho parabol (P) : y = x2 và đường thẳng (d) : y= 3mx + 1 - m2 ( m là tham số)
a) TÌm m để (d) đường thẳng đi qua A( 1; -9)
b) Tìm m để (d) m cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 thõa mãn x1 + x2 = 2x1x2
Câu 1: cho hàm số y = x2 ( P )
a/ tính giá trị của m để đường thẳng y = mx - 4 tiếp xúc với ( P ).
Câu 2: cho hệ phương trình x2+ 3x + m = 0 (1)
a/ với giá trị nào của thì phương trình ( 1 ) có nghiệm?, vô ngiệm?
b/ khi phương trình 1 có nghiệm hãy x1; x2 hãy tính \(\sqrt{\text{x_1^2+ x_2}^2}\)
Câu 3: cho pt x2 + mx - 3 =0 ( 1 )
a/ chứng minh phương trình 1 luôn có hai ngiệm x1 ; x2.
Cho phương trình
(x+2)(4-x)-m=0
tìm m để phương trình có 2 nghiệm x1, x2 thỏa x2=3x1
cho phương trình x2-mx-1=0(m là tham số). Tìm tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn x1< x2 và \(\left|x_1\right|-\left|x_2\right|=6\)
Trên mặt phẳng Oxy , cho (P) : y= \(\dfrac{1}{2}\) x2 và đường thẳng (d) : y= x-m ( m là tham số)
a) Với m=0, tìm tọa độ giao điểm (P) và (d) bằng phương pháp đại số
b) Tìm điều kiện của m để (d) cắt (P) tại 2 điểm phân biệt
(mink đag cần rất gấp)
Bài 1: Cho parabol (P) : y = x2 và đường thẳng (d) : y= 3mx + 1 - m2 ( m là tham số).
Tìm m để (d) m cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 thõa mãn : x1 + x2 = 2x1x2
(mink đag cần gấp)
Xác định m để phương trình \(x^2-\left(2m+1\right)x+m^2+m-6=0\) có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn đẳng thức : \(x_1^2+x_2^2+x_1x_2=10\)
Cho phương trình: (m-10)x\(^2\)+2(m-10)x+2=0
a) tìm tất cả các giá trị của m để phương trình có 2 nghiệm phân biệt
b) giả sử phương trình đã cho có 2 nghiệm phân biệt \(x_1,x_2\). Chứng minh: \(x_1^3+x_2^3+x^2_1x_2+x_1x_2^2+4< 0\)