\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-10\right)^2-2\left(m-10\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>12\\\left\{{}\begin{matrix}m< 10\\m\ne0\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=\frac{2}{m-10}\end{matrix}\right.\)
\(P=x_1^3+x_2^3+x_1^2x_2+x_1x_2^2+4\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+x_1x_2\left(x_1+x_2\right)+4\)
\(=-8+6x_1x_2-2x_1x_2+4\)
\(=4x_1x_2-4=4\left(x_1x_2-1\right)\)
\(=4\left(\frac{2}{m-10}-1\right)\)
Nếu \(m< 10\Rightarrow\frac{2}{m-10}< 0\Rightarrow\frac{2}{m-10}-1< 0\Rightarrow P< 0\)
Nếu \(m>12\Rightarrow m-10>2\Rightarrow\frac{2}{m-10}< 1\Rightarrow\frac{2}{m-10}-1< 0\Rightarrow P< 0\)
Vậy \(P< 0\) với mọi m thỏa mãn (1)