Cho đường tròn tâm O; bán kính R, đường kính AB. Lấy điểm M thuộc đường tròn khác hai điểm A,B . Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B lần lượt tại C và D .
a. Vẽ hình và chứng minh tam giác COD vuông.
b. Cho AC= R CÂN 3 . Tính độ dài BD theo R
Cho nửa đường tròn (O) ,đường kính BC. Lấy D,E di động trên nửa đường tròn sao cho góc EOD =90 độ ,\(\left(D\in\stackrel\frown{CE}\right)\)\(\left(E\in\stackrel\frown{BD}\right)\)
BD cắt CE tại H ,các tia BE,CD cắt nhau tại A
a, cm : tg ADHE nội tiếp được
b, cm : OD là tiếp tuyến của đường tròn ngoại tiếp tg ADHE
cho (O;R),đường kính AB .trên (O) lấy điểm C sao cho AC=R ,kẻ OHvuoong góc với BC(H thuộc BC)
a)tính độ dài đoạn thằng OH khi AB =10cm
b)tiếp tuyến tại C của (O,R) cắt OH tại D .chứng minh OH.OD=R2
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
cho đường tròn (O; R) hai đường kính AB và CD vuông góc với nhau, trên cung nhỏ BC lấy I, IA cắt CD rại F. Tiếp tuyến tại I cắt AB tại E. a) Chứng minh ID phân giác góc AIB. b) Chứng minh 4 điểm B,I,F,O cùng thuộc 1 đường tròn. c) Tính EB,EA theo R
Trên ( O;R), vẽ đường kính AB. lấy C thuộc (O) sao cho AC=R và lấy điểm D bất kì trên cung nhỏ BC (D ko trùng với B,C ). Gọi E là giao điểm của AD và BC. Đường thẳng đi qua E vuông góc với đưởng thẳng AB tại H. C/m tứ giác AHEC là tứ giác nội tiếp
Cho hình thang ABCD nội tiếp đường tròn ( O) có đường chéo AC, BD cắt nhau ở E, các cạnh bên AD, BC kéo dài cắt nhau ở F. Chứng minh rằng: a, Tứ giác ABCD là hình thang cân b, FA.FD=FB.FC c, Góc AED = góc AOD d, Tứ giác AOCF nội tiếp
Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm D và vẽ đường tròn tâm O đường kính CD, BC cắt đường tròn tại E, BD cắt đường tròn tại F.
a) Chứng minh ABED nội tiếp.
b) Chứng minh ∠ABC= ∠EDC.
c) Chứng minh AC là tia phân giác của góc EAF.
d) Biết ∠ACB =30 độ, CD = 4cm. Tính diện tích hình quạt tròn DOE (ứng với cung nhỏ DE của đường tròn tâm (O)).
Câu 1 : Cho (O ; R) và dây AB = R\(\sqrt{2}\)
a/ Tính số đo cung AB ; số đo góc AOB
b/ Tính theo R độ dài cung AB
c/ Tính diện tích của hình viên phân giới hạn bởi dây AB và cung nhỏ AB theo R
Câu 3 : Cho tam giác ABC có Â = 60 nội tiếp trong (O ; R)
a/ Tính số đo cung BC
b/ Tính độ dài dây BC và độ dài cung BC theo R
c/ Tính diện tích hình quạt ứng với góc ở tâm BOC theo R
Câu 4 : Cho đường tròn tâm O, đường kính BC, Lấy điểm A trên cung BC sao cho AB < AC . Trên OC lấy điểm D, từ D kẻ đường thẳng vuông góc với BC cắt AC tại E .
a) Chứng minh : g óc BAC = 90 và tứ giác ABDE nội tiếp
b) Chứng minh : góc DAE bằng góc DBE
c) Đường cao AH của tam giác ABC cắt đường tròn tại F. Chứng minh :
HF . DC = HC . ED
d) Chứng minh BC là tia phân giác của góc ABF