Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét tứ giác ACEH có
\(\widehat{ACE}+\widehat{AHE}=180^0\)
Do đó: ACEH là tứ giác nội tiếp
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét tứ giác ACEH có
\(\widehat{ACE}+\widehat{AHE}=180^0\)
Do đó: ACEH là tứ giác nội tiếp
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
Cho tam giác ABC nhọn nội tiếp đường tròn (O). Trên cung nhỏ AC lấy điểm D. Kẻ DE vuông góc với BC, DF vuông góc với ÁC
a) CMR: Tứ giác DFEC nội tiếp được đường tròn
b) Gọi G là giao điểm của AB và EF. CMR : Góc FED = Góc ABD và tam giác BDG vuông
c) Gọi I là trung điểm của EF, H là trung điểm của AB. CMR: Tam giác ABD đồng dạng với tam giác FED và IH vuông góc với DI
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho đường tròn (O;R) tiếp xúc với đường thẳng d tại A. Trên d lấy H ko trùng với A và AH<R. Qua H kẻ đường thẳng vương góc với d, đường thẳng này cắt (O) tại E và B (E nằm giữa A và H). Lấy C trên d sao cho H là trung điểm đoạn AC, đường thẳng CE cắt AB tại K.Xác định vị trí điểm H để AB=R√3
Cho (O ;R). Từ một điểm A bên ngoài đường tròn kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm). I là một điểm thuộc đoạn BC ( IB < IC ). Qua I kẻ đường thẳng d vuông góc với OI cắt AB và AC thứ tự tại E và F
1. Chứng minh các tứ giác OIBE và OIFC nội tiếp được
2. Chứng minh I là trung điểm của EF
3. Gọi K là điểm thuộc cung nhỏ BC. Tiếp tuyến tại K của (O) cắt AB và AC tại M và N, tính chu vi tam giác AMN theo R nếu OA = 2R
4. Qua O kẻ đường thẳng vuông góc với AO cắt AB, AC thứ tự tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung BC. Tiếp tuyến tại B với đường tròn tâm O cắt AC tại E. Gọi I là trung điểm của dây AC a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB²=EC.EA c) Biết bán kính đường tròn tâm O bằng 2cm, tính diện tích tam giác ABE Vẽ hình và giải giúp e với ạ
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Từ một điểm A bất kỳ ở bên ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC (B,C (O)). Trên cung lớn BC lấy điểm D, qua O vẽ đường thẳng d vuông góc với AD tại I và d cắt tia CB tại K.
1) Chứng minh tứ giác BIOC nội tiếp.
2) Chứng minh KB. KC = KI. KO.
3) Chứng minh tích OI. OK không đổi.
4) Gọi E là giao điểm của (O) với AD. Chứng minh KE là tiếp tuyến của (O).
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.