Cho đường tròn tâm O, cát tuyến (d) cắt đường tròn tại A và B, C thuộc (d) sao cho A nằm giữa C và B. từ C vẽ tiếp tuyến CN với đường tròn tại N (N thuộc cung lớn AB), CO cắt đường tròn tại E và F. Từ N hạn NI vuông góc với CO tại I. Chứng minh góc EIA = góc OAB
Cho dây AB của đường tròn (O;R). Các tiếp tuyến tại A và B của (O) cắt nhau tại C. Nối tâm O với điểm H thuộc dây AB và kẻ qua H đường thẳng vuông góc với OH, đường này cắt CA ở E và CB ở D.
a) Chứng minh: OBCA nội tiếp
b) Chứng minh: OA.OD=OB.OEc
) Cho AB=R Tính diện tích phần mặt phẳng giới hạn bởi BC, AC và cung nhỏ AB theo R
Cho đường tròn (O), điểm M nằm ngoài (O). Kẻ tiếp tuyến MA và cát tuyến MBC. Đường cao AH của tam giác ABC, phân giác góc BAC cắt BC ở D, cắt (O) ở E. C/m:
a) OE // AH
b) MA = MD
c) AD.AE = AC.AB
Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Qua A kẻ tiếp tuyến AB, AC với dường tròn (O). M là 1 điểm trên dây BC, đường thẳng kẻ qua M vuông góc với OM cắt tia AB, AC lần lượt ở D và E. Chứng minh:
a, 4 điểm B, D, M, O cùng thuộc 1 đường tròn
b, Tứ giác OMEC nội tiếp
c, MD = ME
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đtr (O).Đường cao AD của tam giác ABC cắt đtr (O) tại E(E khác A).Từ E vẽ EK vuông góc với .Qua điểm A vẽ tiếp tuyến xy với đtr (O).Từ E kẻ đường thẳng vuông góc với đường thẳng xy tại Q
a)C/m tứ giác AQKE nội tiếp và góc KQE = góc BCE
b)Tia KD cắt AC tại N.C/m DECN nội tiếp và EN.QK=ND.EQ
Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R). Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F. Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính EF/MK ?
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. Chứng mình 4 điểm C,H,B,K cùng thuộc 1 đường tròn'