BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m1.
Với m = 3, hãy:a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.2. Tìm các giá trị của m để:
1) (d) và (P) tiếp xúc nhau.
2) (d) cắt (P) tại hai điểm phân biệt
Cho tứ giác ABCD. Hai đường chéo AC và BD cắt nhau tại I.d1) Nếu IA. IC = IB. ID thì bốn điểm A, B, C, D cùng thuộc một đường tròn.d2) Nếu AB và CD kéo dài cắt nhau tại M và MA. MB = MC. MD thì bốnđiểm A, B, C, D cùng thuộc một đường tròn.
Cho tam giác ABC nhọn nội tiếp đường tròn (O), các đường cao BD và CE.Chứng minh:a) BEDC là tứ giác nội tiếp.b) AD. AC = AE. AB.c) OA vuông góc với DE.
Bài25. Cho đường tròn (O; R) và dây AB (AB < 2R). Gọi C là điểm chính giữa cung nhỏ AB, lấy điểm D trên cung lớn AB ( AD > BD). Dây AB cắt OC, CD lần lượt tại I và E. Từ B kẻ BH vuông góc với CD tại H. Chứng minh: BCIH là tứ giác nội tiếp. Chứng minh: CE. CD không phụ thuộc vào vị trí của điểm D trên cung lớn AB. Tia IH cắt BD tại F. Chứng minh: AD = 2IF. Xác định vị trí của D trên cung lớn AB sao cho chu vi của tam giác OBF đạt giá trị lớn nhấBài 28. Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Hạ OA vuông góc với d tại A. Gọi B là một điểm thuộc đường thẳng d ( B không trùng A). Qua B kẻ hai tiếp tuyến BC, BD tới đường tròn (C, D là tiếp điểm). Nối CD cắt OB tại E, cắt OA tại F. Chứng minh: bốn điểm B, C, O, D thuộc một đường tròn. Chứng minh: OA. OF = OB . OE Đoạn thẳng OB cắt đường tròn (O) tại I. Chứng minh: I cách đều ba cạnh của tam giác BCD. Tìm vị trí của B trên đường thẳng d để √(OE.EF) đạt giá trị lớn nhất.Bài 29. Cho đường tròn nửa (O), đường kính AB = 2R. Gọi Ax, By lần lượt là hai tiếp tuyến của đường tròn (O) tại hai điểm A và B. Lấy điểm K nằm giữa A và B (K không trùng A, B) và điểm M thuộc nửa đường tròn (O) (M không trùng A, B). Đường thẳng vuông góc với MK tại M cắt Ax, By lần lượt tại C và D. Chứng minh: ACMK là tứ giác nội tiếp. Chứng minh: (MDK) ̂=(MBK) ̂ . Từ đó chứng minh: CK DK. Gọi giao điểm AM và CK là E, giao điểm của BM và DK là F. Tứ giác AEFK là hình gì? Tại sao? Với AM = R và K là trung điểm của AO. Tính EF/MK ?
Thánh địa Mĩ Sơn (thuộc xã Duy Phú, huyện Phú Xuyên, tỉnh Quảng Nam) cách thành phố Đà Nẵng khoảng 30km về phía tây nam, cách Trà Kiệu khoảng 10km về phía tây trong một thung lung hẹp.
Thánh địa Mĩ Sơn là một quần thể kiến trúc nổi tiếng nhất của người Chăm của nước ta được xây dựng từ cuối thế kỉ IV đến thế kỉ XIII. Ngày 29/4/1979, Bộ Văn hóa Thông tin đã ra Quyết định số 54/QĐ công nhận Mĩ Sơn là Di tích kiến trúc nghệ thuật.
Mĩ Sơn với hơn 70 công trình kiến trúc bằng gạch đá thờ các vị thần Ấn Độ giáo được phát hiện cách đây 100 năm. Bị chiến tranh tàn phá, đến năm 1975, Mĩ Sơn chỉ còn lại 32 công trình, trong đó khoảng 20 công trình còn giữ được dáng vẻ ban đầu. Đáng tiếc công trình lớn nhất là tháp A1 cao 24m, có 6 tháp phụ xung quanh, tháp này được đánh giá là kiệt tác của kiến trúc Chăm-pa đã bị bom Mĩ đánh sập cuối năm 1969.
Những đền thờ chính của Mĩ Sơn thờ một bộ linga hoặc hình tượng của thần Si-va – đấng bảo hộ của các dòng vua Chăm – pa. Vị thần được tôn thờ ở Mĩ Sơn là Bhadrevara, là vị vua đã sáng lập dòng vua đầu tiên của vùng Amarawati vào thế kỉ IV kết hợp với tên thần Siva, trở thành tín ngưỡng chính thờ thần – vua và tổ tiên hoàng tộc.
(Theo Bách khoa tri thức phổ thông)
Câu hỏi: Hãy chỉ ra những phương pháp thuyết minh được sử dụng trong phần văn bản trên.