Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Qua M kẻ đường thẳng (d) cắt (O) tại C và D (C nằm giữa M và D), đường thẳng (d') cắt (O') tại E và F (E nằm giữa F và M). Chứng minh CDFE là tứ giác nội tiếp
Bài 4 Cho nửa đường tròn đường kính AB và dây AC. Từ một điểm D trên AC, vẽ DE vuông góc với AB. Hai đường thẳng DE và BC cắt nhau tại F. Chứng minh rằng:
a) Tứ giác BCDE nội tiếp.
b)góc AFE= ACE.
Bài 5. Cho nứa đường tròn đường kính AB. Lấy hai điểm C và D trên nửa đường tròn sao cho cung AC= cung CD= cung DB. Các tiếp tuyến vẽ từ B và C của nửa đường tròn cắt nhau tại I.Hai tia AC và BD cắt nhau tại K. Chứng minh rằng:
a) Các tam giác KAB và IBC là những tam giác đêu.
b) Tứ giác KIBC nội tiếp.
Bài 6. Cho nửa đường tròn (0) đường kính AB và tia tiếp tuyến Bx của nửa đường tròn. Trên tia Bx lấy hai điểm C và D (C nằm giữa B và D). Các tia AC và BD lần lượt cắt đường tròn tại E và F. Hai dây AE và BF cắt nhau tại M. Hai tia AF và BE cắt nhau tại N. Chứng minh rằng:
a) Tứ giác FNEM nội tiêp.
b) Tứ giác CDFE nội tiếp.
Bài 7. Cho tam giác ABC. Hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC. a) Chứng minh rằng tứ giác ABDC nội tiếp được đường tròn. Xác định tâm 0 của đường tròn đó
b) Đường thẳng DH cắt đường tròn (0) tại điểm thứ hai là I. Chứng minh rằng năm điểm A, I, F, H, E cùng nằm trên một đường tròn
Các bạn giải giúp mình các bài này nhé, mình cảm ơn nhiều lắm
Cho nửa đường tròn(o) bán kính AB, kẻ tiếp tuyến Bx và lấy 2 điểm C,D thuộc nửa đường tròn. Các tia AC, AD cắt Bx lần lượt tại E và F ( F nằm giữa E và B ). Chứng minh: a) Góc ABD = góc DFB. b) Tứ giác CEFD là tứ giác nội tiếp được.
Cho nửa đường tròn (O) đường kính AB=2R kẻ tiếp tuyến Bx vs nửa đường tròn .Gọi C,D lần lượt là 2 điểm di động trên nửa đường tròn .Các tia AC,AD cắt Bx lần lượt tại E và F ( F nằm giữa B và E )
a, chứng minh tứ giác CEFD nội tiếp
b, khi C,D di động trên nửa đường tròn .Chứng minh AC\(\times\) AE=AD \(\times\) AF có giá trị không đổi
HELP ME TỐI PJAIR NỘP RÙI
Cho nửa đường tròn (O) đường kính BC. Lấy điểm A trên tia đối của tia CB. Kẻ tiếp tuyến AF với nửa đường tròn (O) (F là tiếp điểm), tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D .Gọi H là giao điểm của BF với DO; K là giao điểm thứ 2 của DC vs nửa đường tròn (O)
a, CMR: AO.AB=AF.AD
b, Tg OCKH nt
c, kẻ OM vuông góc với BC (M thuộc AD) chứng mình BD/DM - DM/AM = 1
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
Cho ∆ABC có 3 góc nhọn (AB < AC) nội tiếp trong đường tròn (O) , hai đường cao BF và CE cắt nhau tại H
a/ Chứng minh 4 điểm B, E, F,C cùng nằm trên một đường tròn . Xác định tâm I của đường tròn đó
b/ Tia AH cắt (O) tại M và vẽ đường kính AD của đường tròn (O) . Chứng minh tứ giác BCDM là hình thang cân
c/ Chứng minh H, I, D thẳng hàng
d/ AD cắt EF tại K . Chứng minh AD vuông EF
Từ điểm A nằm ngoài (O) vẽ hai tiếp tuyến AB,AC và cát tuyến AEF ( AE < AF và tia AF nằm giữa hai tia AO, AC. GỌI I là trung điểm EF. Qua A kẻ đường thẳng song song CF cắt BF. CM tứ giác ABJO nội tiếp