Sửa đề: ABIO nội tiếp
ΔOEF cân tại O
mà OI là trung tuyến
nên OI vuông góc FE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp
Sửa đề: ABIO nội tiếp
ΔOEF cân tại O
mà OI là trung tuyến
nên OI vuông góc FE
góc OIA=góc OBA=90 độ
=>OIBA nội tiếp
Từ điểm M nằm ngoài đường tròn (O;R).Vẽ tiếp tuyến MA, MB và cát tuyến MEF với đường tròn (O).(A, B là 2 tiếp điểm, ME<MF, tia MF nằm giữa hai tia Ma, MO).Dây AC song song EF. Gọi I là giao điểm BC và EF.cm I là trung điểm EF
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB,AC (B,C là tiếp điểm). Kẻ cát tuyến ADE,H là trung điểm của DE. Chứng minh :
a/ Tứ giác ABOC nội tiếp
b/ AB2 = AD.AE
c)bh cắt (O) tại K : cm AE//Ck
Từ điểm M nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến ME, MF và cát tuyến MAB với (O) ( cát tuyến MAB không đi qua O ) .Qua A kẻ đường thẳng vuông góc với OE cắt EF và EB lần lượt tại C và D .Gọi N là trung điểm của AB . Chứng minh a) OFMN là tứ giác nội tiếp b) ACNF là tứ giác nội tiếp c) AC = CD
Cho diểm A nằm ngoài đường tròn tâm O. Qua A kẻ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD (C nằm giữa A và D). Gọi I là trung điểm AB , lấy điểm K đối xứng với A qua B. Chứng minh rằng tứ giác IKDC nội tiếp đường tròn
Cho (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O)(A,B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D. a)Chứng minh tứ giác MAOB nội tiếp b)Gọi H là giao điểm của MO và AB. Chứng minh: MC.MD=MA^2. Từ đó suy ra MC.MD=MH.MO c)Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O)
Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thẳng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng:
a) Tứ giác MAOB là tứ giác nội tiếp và
b) Bốn điểm O, H, C, D thuộc một đường tròn.
c) CI là tia phân giác của .
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF