cho nửa đường tròn (o) đường kính AB, điểm C thuộc nửa đường tròn ( AC > BC). Gọi D là một điểm trên bán kính OA, qua D kẻ đường vuông góc với AB cắt AC và BC lần lượt tại E và F. Tiếp tuyến của nửa đường tròn tại C cắt È ở I. Chứng minh
a) Tứ giác BDEC và ADCF là các tứ giác nội tiếp được đường tròn.
b) I là trung điểm của EF
c) AE.EC = DE.EF
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho nửa đường tròn (O) đường kính AB=2R kẻ tiếp tuyến Bx vs nửa đường tròn .Gọi C,D lần lượt là 2 điểm di động trên nửa đường tròn .Các tia AC,AD cắt Bx lần lượt tại E và F ( F nằm giữa B và E )
a, chứng minh tứ giác CEFD nội tiếp
b, khi C,D di động trên nửa đường tròn .Chứng minh AC\(\times\) AE=AD \(\times\) AF có giá trị không đổi
HELP ME TỐI PJAIR NỘP RÙI
Cho nửa đường tròn (O) đường kính AB I thuộc OA, M thuộc (O), Ax, By là các đường tiếp tuyến của đường tròn, từ M kẻ đường thẳng IM cắt Ax, By lần lượt tại D và I. Chứng minh rằng các tứ giác AIMD, BIME là tứ giác nội tiếp. Góc ^DIE =90° ∆AIM đồng dạng ∆EIM
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Qua M kẻ đường thẳng (d) cắt (O) tại C và D (C nằm giữa M và D), đường thẳng (d') cắt (O') tại E và F (E nằm giữa F và M). Chứng minh CDFE là tứ giác nội tiếp
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Câu 2: Cho phương trình x2 -(m-1)x+(m-2)=0(m là tham số).
a/ Tìm m để phương trình có hai nghiệm trái dấu.
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
cho nửa đường tròn đường kinhs EF hai tiếp tuyến Ex và Fy gọi A là một điểm nằm giữa E và F , K là điểm thuộc đường tròn qua K là đường thẳng vuông góc với AK cắt Ex ở I và Fy ở H.
a chứng minh tứ giác AKHF nội tiếp đường tròn.
b so sánh EIK và KEA
mn có câu hỏi nào cho bài này thì cho mik câu hỏi với ạ, cảm ơn mn