Bài 7: Tứ giác nội tiếp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Duy Khánh

 Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a)  Chứng minh : tứ giác ADEC nội tiếp. b)  Chứng minh:  CA.CB = CE.CF c)  Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d)  Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất 

Nguyễn Lê Phước Thịnh
12 tháng 2 2021 lúc 11:08

a) Vì D là một điểm nằm trên cung AM nhỏ của (O) nên D∈(O)

Xét (O) có

ΔADB nội tiếp đường tròn(A,D,B∈(O))

AB là đường kính của (O)(gt)

Do đó: ΔADB vuông tại D(Định lí)

\(\widehat{ADB}=90^0\)

hay \(\widehat{ADE}=90^0\)

Xét tứ giác ADEC có 

\(\widehat{ADE}\) và \(\widehat{ACE}\) là hai góc đối

\(\widehat{ADE}+\widehat{ACE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ADEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)


Các câu hỏi tương tự
Chanhh
Xem chi tiết
Chanhh
Xem chi tiết
Phương Uyên
Xem chi tiết
Thư Minh
Xem chi tiết
Đỗ’s Dũng’s
Xem chi tiết
Knight Dragon
Xem chi tiết
Trần Như Đức Thiên
Xem chi tiết
cao lâm
Xem chi tiết
annie
Xem chi tiết