Theo bài ra ta có: \(\left|a-c\right|+\left|b-c\right|< \left(3+2\right)\)
Hay: \(\left|a-c\right|+\left|c-b\right|< 5\) => \(\left|a-c+c-b\right|< 5\) => \(\left|a-b\right|< 5\)
Theo bài ra ta có: \(\left|a-c\right|+\left|b-c\right|< \left(3+2\right)\)
Hay: \(\left|a-c\right|+\left|c-b\right|< 5\) => \(\left|a-c+c-b\right|< 5\) => \(\left|a-b\right|< 5\)
Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\)có các hệ số \(a,b,c,d\in Z\)
Biết rằng: \(P\left(x\right)⋮5\left(\forall x\right)\) Chứng minh rằng: \(a,b,c,d⋮5\)
Chứng minh rằng:
a, \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\) với a> b> 0
b, \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
c, \(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^3\)
Cho đa thức \(P\left(x\right)=\text{ax}^2+bx+c\) ( a, b, c là hằng số ) thỏa mãn P(1) = P(-1). Chứng minh rằng \(P\left(x\right)=P\left(-x\right),\forall x\in R\)
Các bạn nhận xét xem mình làm đúng chưa nhé! Mình có chút phân vân! Có sai chỗ nào thì chỉ bảo mình nha! Cảm ơn các bạn nhiều nha!
Đề bài: Chứng minh rằng đa thức P(x) có ít nhất 2 nghiệm biết: \(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=0\)
Bài làm:
Với x = 0, ta có: \(0.P\left(0+2\right)-\left(0-3\right).P\left(0-1\right)=0\Rightarrow0+3.P\left(-1\right)=0\Rightarrow P\left(-1\right)=0\)
Với x = 3, ta có: \(3.P\left(3+2\right)-\left(3-3\right).P\left(3-1\right)=0\Rightarrow3.P\left(5\right)-0.P\left(2\right)=0\Rightarrow3.P\left(5\right)=0\Rightarrow P\left(5\right)=0\)
Vậy: Đa thức P(x) có ít nhất 2 nghiệm là x = -1 và x = 5
Cho: a;b;c;d>0. Chứng minh rằng: \(a^2+b^2+c^2+d^2+1\ge a\left(b+c+d+1\right)\)
Câu 1: Xác định hệ số a, b của đa thức \(f\left(x\right)=ax+b\) biết \(f\left(1\right)=1\) và \(f\left(-1\right)=-5\).
Câu 2: Cho hai đa thức: \(A\left(x\right)=x^5+2x^2-\dfrac{1}{2}x-3\)
\(B\left(x\right)=-x^5-3x^2+\dfrac{1}{2}x+1\)
CMR \(M\left(x\right)=A\left(x\right)+B\left(x\right)\)vô nghiệm.
➤ Bài 1 : Cho đa thức :
\(f\left(x\right)=x\left(\frac{x^{2013}}{3}-\frac{x^{2014}}{5}+\frac{x^{2015}}{7}+\frac{x^2}{2}\right)-\left(\frac{x^{2014}}{3}-\frac{x^{2015}}{5}+\frac{x^{2016}}{7}+\frac{x^2}{2}\right)\).
a/ Tìm bậc của đa thức f(x).
b/ Chứng minh : Đa thức f(x) luôn nhận giá trị nguyên với \(\forall x\)\(\in \mathbb{Z}\)
➤ Bài 2 : Cho 3 số ɑ, b, c thoả mãn :
\(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
Tính \(M=4\left(a-b\right)\left(b-c\right)\left(c-a\right)^2\).
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) và b + d khác 0. Chứng minh:
\(\dfrac{3a^2+c^2}{3b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
1.Rút gọn các đơn thức sau và chỉ bra hệ số và phần biến
a)\(-2x^2y.\left(-xy^2\right)\)
b)\(\frac{1}{4}\left(x^2y^3\right)^2.\left(-2xy\right)\)
2.Tính các tích sau rồi tìm bậc của công thức thu được
a)\(\left(-7x^2yz\right).\frac{3}{7}xy^2z^3\)
b)\(-\frac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
c)\(x^2yz.\left(2xy\right)^2z\)
d)\(-\frac{1}{3}x^2y.\left(-x^3yz\right)\)
3.Thực hiện phép nhân các đơn thức sau rồi tìm bậc đơn thức nhận được
a)\(4x^2y.\left(-5xy^4\right)\)
b)\(\frac{-1}{2}x^3y.\left(-xy\right)\)
c)\(\left(-2x^3y\right).3xy^4\)
d)\(\frac{-4}{5}x^3y.\left(-xy\right)\)
e)\(\frac{2}{3}xyz.\left(-6x^2y\right).\left(-xy^2z\right)\)
f)\(\left(-2x^2y\right).\left(\frac{-1}{2}\right)^2.\left(x^2y^3\right)^2\)