Cho hình thang ABCD (AB//CD). Gọi I là giao điểm của hai đường chéo AC và BD. Vẽ qua I một đường thẳng song song với AB cắt AD và BC lần lượt tại E và F. CMR:
a. IE=IF
b. \(\dfrac{2}{EF}\)=\(\dfrac{1}{AB}\)+\(\dfrac{1}{CD}\)
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Chủ đề: Học toán lớp 7
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G.
a) Chứng minh : OA .OD = OB.OC.
b) Cho AB = 5cm, CD = 10 cm và OC = 6cm. Hãy tính OA, OE.
Cho hình thang ABCD có đáy lớn CD. Qua A vẽ đường thẳng AK // BC. Qua B vẽ đường thẳng BI // AD. BI cắt AC ở F, AK cắt BD ở E. CMR :
a) EF // AB
b) AB2 = CD . EF
Cho hình thang ABCD (AB // CD, AB < CD). Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) DK = CI
b) EF // CD
c) AB2 = CD.EF
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .