Cho hình thang ABCD (AB//CD) gọi O là giao điểm của hai đường chéo. qua O vẽ đường thẳng song song với AB cắt AD và BC Theo thứ tự ở M và N biết AB=6cm CD =10cm Độ dài đoạn thẳng MN là
Cho hình thang ABCD đáy AB và CD (AB<CD) gọi O là giao điểm hai đường chéo m là giao điểm da và CB đường thẳng MO cắt AB và CD thứ tự ở N và K
a, cm AN. KC = BN . KD
b, cm N và K là trung điểm của AB và CD.
Cho hình thang ABCD (AB // CD) có O là giao điểm của hai đường chéo AC và BD. Qua A, kẻ đường thẳng song song với BC cắt BD tại E. Qua B, kẻ đường thẳng song song với AD cắt AC tại F.
a) Chứng minh: EF // CD.
b) Chứng minh: AB2 = CD . EF
Cho hình thang ABCD (AB//CD), M là trung điểm CD. I là giao điểm của AM và BD, K là giao điểm của BM và AC.
a) CMR IK // AB
b) Đường thẳng IK cắt AD, BC theo thứ tự ở E, F. CMR EI = IK = KF
Câu 1: Cho hình thang ABCD (AB // CD) gọi I là giao điểm của hai đường chéo AC và BD. Một điểm M trên đấy AB và MA = 2cm, MB = 6cm, cạnh đáy CD = 12cm. Đường thẳng IM cắt đáy CD tại N. a) Tính tỉ số NC/ND b) Tính độ dài đoạn thẳng NC và ND
Cho hình thang ABCD (AB // CD), M là trung điểm của CD. Gọi H là giao điểm của AM và BD, K là giao điểm của BM và AC.
a) C/m AH/HM = 2AB/CD
b) Chứng minh IK // AB.
c) Đặt AB = a, CD= b. Tính HK theo a và b
: Cho hình thang ABCD (AB < CD và AB // CD). Vẽ qua A đường thẳng AK song song với BC (K DC) và AK cắt BD tại E, vẽ qua B đường thẳng BI song song với AD (I CD) cắt AC tại F.
a) Chứng minh rằng: EF // AB
b) Chứng minh rằng: AB2 = CD.EF
Cho hình thang ABCD ( AB // CD ) . O là giao điểm của AC và BD . Qua O kẻ đường thẳng a // AB và CD , đường thẳng a cắt AD và BC tại E và F . Chứng minh rằng :
a) OE/CD = OA/OC , OF/CD = OB/OD
b) OE = OF
c) 1/AB + 1/CD = 2/EF
Hình thang cân ABCD (AB //CD) có hai đường chéo AC và BD cắt nhau tại O 9h.11).
Gọi M, N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3OM, đáy lớn CD = 5,6 cm
a) Tính độ dài đoạn thẳng MN và đáy nhỏ AB
b) So sánh độ dài đoạn thẳng MN với nửa hiệu các độ dài của CD và AB