a. Áp dụng định lí pitago vào t.g AB có
\(BD^2=AD^2+AB^2\)
\(BD=\sqrt{6^2+8^2=10}cm\)
b,c \(Xét\Delta ADHvà\Delta ADBcó:\)
H=A =900
D chung
=> ΔADH∼ΔADB
\(\frac{AD}{AH}=\frac{DB}{AD}\Rightarrow AD.AD=DH.DB\)
=> AD2 = DH.DB (đpcm)
d.\(Xét\Delta AHBvà\Delta BCDcó\)
\(B_1=D_1\left(slt\right)\\ H=C=90^{\text{0}}\)
=> ΔAHB∼ΔBCD
e.Từ ΔADH∼ΔADB
\(\frac{AH}{AB}=\frac{AD}{BD}hay\frac{AH}{8}=\frac{6}{10}\\ \Rightarrow AH=4.8cm\)
Áp dụng định lí pitago vào tam giác AHD có
\(AH^2=AD^2-AH^2\\ DH=\sqrt{6^2-4.8^2=3,6}cm\)