a, Xét △AHD và △BAD có:
∠AHD=∠BAD (=90 độ), ∠ADB chung
=> △AHD ∼ △BAD (g.g)
b, Xét △EHD và △BCD có:
∠BHA=∠EHD (=90 độ) (đđ) =>∠BCD=∠EHD (=90 độ)
∠BDC chung
=> △EHD ∼ △BCD (g.g)
\(\dfrac{HD}{CD}=\dfrac{ED}{BD}\)=> DH.DB=DE.DC
c, Áp dụng Đ/l Pitago vào △ABD => BD=√(62+82)=10 cm
Ta có SABC=\(\dfrac{1}{2}AH.BD=\dfrac{1}{2}.AB.AD\)=>AH=\(\dfrac{8.6}{10}=4,8cm\)
Áp dụng Đ/l Pitago vào △AHD => HD=√(62-(4,8)2)=3,6 cm => BH=BD-HD=6,4 cm
Xét △BHA và △DHE có: ∠BAH=∠HED (AB//CD), ∠BHA=∠EHD (=90 độ) (đđ) =>△BHA ∼ △DHE (g.g)
\(\dfrac{AB}{DE}=\dfrac{BH}{HD}=>\dfrac{8}{DE}=\dfrac{6,4}{3,6}=>DE=4,5cm\)
Ta có EM//DB => \(\dfrac{MB}{BC}=\dfrac{ED}{CD}=>\dfrac{MB}{6}=\dfrac{4,5}{8}=>MB=3,375cm\)(đpcm)