Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A và D. SA=a căn (3), AB=2a, AD=DC=a. Gọi I là trung điểm AB a. Tính góc giữa mp (SDC) và mp (ABCD) b. Tính góc giữa mp (SDI) và mp (ABCD) c. CM (SCI) vuông góc với (SAB) d. CM (SBC) vuông góc với (SAC)
Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A và D. SA=a căn (3), AB=2a, AD=DC=a. Gọi I là trung điểm AB. SA vuông góc với (ABCD) a. Tính góc giữa mp (SDC) và mp (ABCD) b. Tính góc giữa mp (SDI) và mp (ABCD) c. CM (SCI) vuông góc với (SAB) d. CM (SBC) vuông góc với (SAC)
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA=AD=DC=a, AB=2a; SA vuông góc voi đáy. E trung điểm AB.
a) chứng minh các mặt bên chóp là tam giác vuông
b) tính góc giữa (SBC) và (ABCD); SC và (SAB)
c) tính khoảng cách từ A đến mp(SBC) và khoảng cách giữa 2 đt SC và AC?
Cho hình chóp Sabcd có sa vuông góc với abcd , đáy abcd là hình chữ nhật có cạnh ab=a, ad=2a , sa= 2a căn 3
Gọi I là trung điểm của ab , mặt phẳng P qua I và vuông góc với Sb . Tính góc giữa mặt phẳng Sb và mp abcd
Giups mìnhhh với các bạn ơii , mk cần lời giải chi tiết , cảm ơnn nhiềuuu ah
Cho hình chóp S ABCD . có đáy ABCD là hình thoi cạnh 2a, SA a = 5 ; góc BCD = 60 o và SA vuông góc với ( ) ABCD . Gọi K là trung điểm của CD. Tính góc giữa đường thẳng SK và ( SAB ).
A. 450 . B. 300 . C. 600 . D. arctan \(\dfrac{\sqrt{7}}{\sqrt{5}}\)
help me
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. SA \(\perp\) (ABCD) và SA=AB=a. Gọi M là trung điểm của SC. Chứng minh:
a, BC \(\perp\) (SAB) , (SAB) \(\perp\) (SBC)
b, (SCD) \(\perp\) (ABM)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông. SA \(\perp\) (ABCD) và SA=AB=a. Gọi M là trung điểm của SC. Chứng minh:
a, BC \(\perp\) (SAB) , (SAB) \(\perp\) (SBC)
b, (SCD) \(\perp\) (ABM)
cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB =2a, BC=3a/2, AD=3a. Hình chiếu vuông góc của S lên mp (ABCD) là trung điểm H của BD. Biết góc giữa mp (SCD) và mp (ABCD) bằng 60 . Tính khoảng cách
a> từ C đến mp (SBD)
b> từ B đến mp (SAH)
giúp mình tính kết quả là bn với ạ..
Cho hình chóp S.ABCD có \(SA\perp\left(ABCD\right)\), đáy ABCD là hình vuông cạnh 2a, SA= \(2a\sqrt{3}\) .
1. Chứng minh \(\left(SAC\right)\perp\left(SBD\right)\)
2. Gọi I là trung điểm của AD, mặt phẳng (P) qua I và vuông góc với SD. Xác định và tính thiết diện của hình chóp cắt bởi mặt phẳng (P).
Help me!!!