a: Xét ΔBCN có BC=BN
nên ΔBCN cân tại B
Xét ΔDCM có DM=DC
nên ΔDCM can tại D
b: Xét ΔCBN và ΔMDC có
CB=MD
góc CBN=góc MDC
BN=DC
=>ΔCBN=ΔMDC
a: Xét ΔBCN có BC=BN
nên ΔBCN cân tại B
Xét ΔDCM có DM=DC
nên ΔDCM can tại D
b: Xét ΔCBN và ΔMDC có
CB=MD
góc CBN=góc MDC
BN=DC
=>ΔCBN=ΔMDC
Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh : a) CBN và CDM cân. b) CBN đồng dạng MDC c) Chứng minh M, C, N thẳng hàng.
Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh:
a) Tam giác CBN đồng dạng với tam giác CDM cân.
b) Tam giác CBN đồng dạng với tam giác MDC.
c) 3 điểm M, C, N thẳng hàng.
Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh:
a) Tam giác CBN đồng dạng với tam giác CDM cân.
b) Tam giác CBN đồng dạng với tam giác MDC.
c) 3 điểm M, C, N thẳng hàng.
Cho hbh:ABCD ,trên tia đối của tia DA lấy dm M/ DM=AB,trên tia đối của tia BA lấy dm N /BN=AD .chứng minh
â) tam giác CBN và tam giác CBM cân
b)tam giác CBN đồng dạng vs tam giác MDC
c)CMR :M,C,N thẳng hàng
Cho hình vuông ABCD cố định, M là 1 điểm lấy trên cạnh BC (M B). Tia AM cắt DC tại P. Trên tia đối của tia DC lấy điểm N sao cho DN = BM.
a. Chứng minh: AND = ABM và MAN là vuông cân.
b. Chứng minh: ABM và PDA đồng dạng và BC2 = BM . DP.
c. Qua A vẽ đường thẳng vuông góc với MN tại H và cắt CD tại Q, MN cắt AD ở I. Chứng minh: AH . AQ = AI . AD và DÂQ = HMQ.
d. Chứng minh: NDH và NIQ đồng dạng
cho tam giác ABC vuông ở A; AB=48cm; AC=64cm. Trên tia đối của tia AB lấy điểm D sao cho AD=27cm; trên tia đối của tia AC lấy điểm E sao cho AE= 36cm
a) chứng minh tam giác ABC đồng dạng tam giác ADE
b) tính độ dài của đoạn BC; DE
c) chứng minh DE//BC
d) chứng minh EB vuông góc BC
Cho tam giác ABC (AB < AC). Phân giác trong AD. Trên tia đối của tia DA lấy I sao cho \(\widehat{BAD}\) = \(\widehat{DCI}\)
a) Chứng minh \(\Delta ADB\sim\Delta DCI\)
b) Chứng minh \(\dfrac{AD}{AC}\)=\(\dfrac{AB}{AI}\)
c) Chứng minh AD2 = AB.AC - DB.DC
d) Gọi AE là phân giác ngoài của \(\Delta ABC\) (\(E\in BC\)). Chứng minh \(\dfrac{DB}{DC}\) = \(\dfrac{EB}{EC}\)và AE2 = EC.EB - AB.AC
cho tam giác ABC vuông tại A (AB<AC) có AH là đường cao, AB= 3cm,, BC = 5cm
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BH, CH, AC
c) Trên tia đối của tia AB lấy điểm D sao co AD =AB. Gọi M là trung điểm của AH. Chứng minh HD.AC = BD.MC
d) Chứng minh MC vuống góc với DH
Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!