Cho tứ giác ABCD, M,N là các điểm định bởi:
vecto AM = k vecto AD,0<k<1, vecto BN = k vecto BC. Chứng minh rằng trung điểm AB,CD,MN thẳng hàng
Cho ∆ABC, M, N là các điểm sao cho vecto AM = 2 vecto AB, vecto AN = 2/5 vecto AC
Chứng minh vecto MN = 2/3 vecto AC - 2 vecto AB
cho tam giác ABC có I là trung điểm của BC và G là trọng tâm . Gọi D và E là hai điểm xác định bởi vecto AD=2 vecto AB và vecto AE = 2/5 vecto AC . Hãy phân tích các vecto DE , DG theo hai vecto AB , AC . Chứng minh ba điểm D,G,E, thẳng hàng
Cho tứ giác ABCD, trên cạnh AB,CD lấy lần lượt các điểm M,N sao cho 3 vecto AM=2 vecto AB và 3 vecto DN =2 vecto DC. Tính vecto MN theo hai vecto AD, BC
Cho tam giác ABC. Điểm P là điểm thoả mãn : vecto PA=2AB . Điểm M thoả mãn vecto AM=-3AC. Và điểm N thoả mãn vécto PN=-4AB+6AC.
a) Phân tích vecto PM theo 2 vecto AB và AC
b)Chứng minh 3 điểm P,M,N thẳng hàng
Bài 1:
a,Cho vecto u=(4;3). Tìm vecto v, biết vecto v cùng phương và giá trị tuyệt đối vecto v =15
b,Cho vecto a=(2k+10 ; 5k+16)
vecto b=(-8; -16). Tìm số k để 2 vecto: vecto a và vecto b cùng phương
c,Cho 3 vecto: vecto a(3;1)
vecto b(-2;5)
vecto c(0;17)
*Hãy biểu diễn vecto c theo 2 vecto a và vecto b
*Cho vecto u=2m.vecto a + (1-m). vecto b . Hãy tìm số m để giá trị vecto u =9
Bài 2: Trong mặt phẳng tọa độ (O; vecto i; vecto j) cho A(1;-2); B(0;4); C(3;2). Hãy tìm tọa độ của
a,Điểm M, biết: vecto CM= 2.vecto AB-3.vecto AC
b,Điểm N, biết: vecto AN+ 2.vecto BN- 4 vecto CN= vecto 0
c,Tìm tọa độ điểm E là điểm đối xứng với điểm A qua điểm B
Cho hình bình hành ABCD. Lấy điểm M trên AB sao cho vecto AB = 3 vecto AM, gọi N là trung điểm DC. Hãy phân tích vecto MN theo 2 vecto AB , AC . Mong ai giải giúp em bài này với ạ :(
1. Cho tam giác ABC
a. Dựng điểm R sao cho vecto AR= 1/3 vecto AB + 1/3 vecto AC
b. Gọi M là trung điểm cạnh AC. Cmr A,B,M thẳng hàng
2. Cho hình bình hành ABCD và 2 điểm E,F thoả mãn vecto DF= vecto CE = 1/3DC
Gọi I là giao điểm của AF và DB, J là giao điểm của AE và BC
a. Tính vecto AE theo vecto AJ
b. Cmr tứ giác ABEF là hình bình hành
c. Tính vecto DF theo vecto DE và tính vecto DI theo vecto DB. Cmr IJ // DC
3. Cho tam giác ABC và I,J là 2 điểm thoả mãn các hệ thức vecto
2IA +3IB -IC=0
2JA +3JB=0
a. -Biểu diễn vecto AI theo vecto AB và vecto AC
-Biểu diễn vecto CJ theo vecto CA và vecto CB
b. P,Q theo 2 điểm thoả mãn hệ thức vecto PQ= 2vecto PA+ 3 vecto PB - vecto PC
Cmr P,Q,I thẳng hàng
c. Gọi M là trung điểm của CQ. CM là đường thẳng PM đi qua J
4. Cho 2 điểm A,B cố định.Tìm Tập hợp điểm M ( quỹ tích M) trong mặt phẳng thoả mãn hệ thức
|MA+MB|=|MA-MB|
Cảm ơn đã giải giúp em ạ
Cho ∆ABC có trọng tâm G, điểm I thỏa vecto IA = 2 vecto IB
Chứng minh vecto IG = -5/3 vecto AB + 1/3 vecto AC