cho hình bình hành ABCD có AD = 2.AB, góc A = 60 độ. gọi E,F lần lượt là trung điểm của BC và AD
a) chứng minh AE vuông góc với BF
b) chứng minh BFDC là hình thang cân
c) tính góc ADB
d) lấy M đối xứng với A qua B . Chứng minh BMCD là hình chữ nhật. Suy ra M, E, D thẳng hàng
Ta có: F là trung điểm của AD
=> AF = DF = \(\frac{1}{2}\)AD (1)
E là trung điểm của BC
=> BE = CE = \(\frac{1}{2}\)BC (2)
Do: 2AB = AD
=> AB = \(\frac{1}{2}\)AD (3)
Ta có: hình bình hành ABCD
=> AB = CD
=> AD = BC (4)
=> AD // BC
Từ (1), (2),(3) (4)=> AB = AF = DF =BE = CE
Xét tứ giác ABEF có:
AF = BF
AF // BE ( F, E lần lượt thuộc AD, BC; AD//BC)
=> tứ giác ABEF là hình bình hành
Xét hình bình hành ABEF có:
AB = AF
=> hình bình hành ABEF là hình thoi
=> AE ⊥ BF ( tính chất)
c, Xét tam giác ABD có:
BF là đường trung tuyến ứng vs cạnh AD
F là trung điểm của AD
=> tam giác ABD là tam giác vuông
Xét tam giác vuông ABD
=> góc BAD + góc ADB + góc DBA = 1800
=> 600 + góc ADB + 900 = 1800
=> góc ADB = 300
b, Ta có hình thoi ABEF
=> BF là tia phân giác của góc ABE
Ta có: À // BE
=> góc FAB + góc ABE = 1800 (trong cùng phía bù nhau)
=> góc ABE = 1200
Mà: BF là tia phân giác của góc ABE
=> Góc ABF = góc EBF = 600
Ta lại có: hình bình hành ABCD
=> góc A = góc C
=> Góc C = 600
Xét tứ giác DFBC có:
DF // BC ( vì AD // BC; F ∈ AD)
=> tứ giác DFBC là hình thang
Xét hình thang DFBC có:
Góc FBC = góc BCD = 600
=> hình thang DFBC là hình thang cân
d, Ta có: AB = BM ( A đối xứng vs M qua B)
Mà: AB = DC
Nên: BM = CD
Tương tự ta có: BM // CD
Xét tứ giác BMCD có:
BM = CD
BM // CD
=> tứ giác BMCD là hình bình hành
Xét hình bình hành BMCD có:
Góc DBM = 900
=> hình bình hành BMCD là hình chữ nhật
Cậu xem lại nhé