\(AC^2+BD^2=2\left(AB^2+AD^2\right)\)
\(\Leftrightarrow AB^2+AC^2=5BD^2\)
Áp dụng BĐT Cauchy:
\(cosBAD=\dfrac{AB^2+AD^2-BD^2}{2AB.AD}\ge\dfrac{4BD^2}{AB^2+AD^2}=\dfrac{4BD^2}{5BD^2}=\dfrac{4}{5}\)
\(\Rightarrow sinBAD=\sqrt{1-cos^2BAD}\le\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{1}{sinBAD}\ge\dfrac{5}{3}\)
\(\Rightarrow cotBAD=\dfrac{cosBAD}{sinBAD}\ge\dfrac{4}{5}.\dfrac{5}{3}=\dfrac{4}{3}\)
Đúng 0
Bình luận (0)