Để (d) cắt 2 trục tọa độ tại 2 điểm phân biệt thì \(\left\{{}\begin{matrix}m-1\ne0\\-2m+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Khi đó, pt hoành độ giao điểm M của (d) và Ox:
\(\left(m-1\right)x-2m+4=0\Rightarrow x=\frac{2m-4}{m-1}\Rightarrow OM=\left|\frac{2m-4}{m-1}\right|\)
Pt tung độ giao điểm N với Oy:
\(y=\left(m-1\right).0-2m+4\Rightarrow y=-\left(2m-4\right)\Rightarrow ON=\left|2m-4\right|\)
Để OMN cân thì \(OM=ON\)
\(\Rightarrow\left|\frac{2m-4}{m-1}\right|=\left|2m-4\right|\Rightarrow\left|m-1\right|=1\)
\(\Rightarrow\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)