Cho hàm số y = 2x3 + 3ax2 + b có đồ thị (C). Gọi A, B lần lượt là 2 điểm phân biệt thuộc (C) sao cho tiếp tuyến của (C) tại A, B có cùng hệ số góc bằng 6. Biết khoảng cách từ gốc tọa độ O đến đường thẳng AB bằng 1. Giá trị nhỏ nhất của biểu thức 2a2 + (a+b)2 bằng
Cho hàm số y = x - 2/x + 3 có đồ thị C sao cho điểm M trên đồ thị c tiếp tuyến của C tại M tạo với hai trục tọa độ một tam giác có diện tích bằng 18/5
Đồ thị hàm số \(y=\dfrac{1}{\sqrt{3}}\sin3x\) cắt trục hoành tại gốc tọa độ dưới một góc bao nhiêu độ (góc giữa trục hoành và tiếp tuyến của đồ thị tại giao điểm ) ?
Gọi (c) là đồ thị của hàm số y = x3/3-x2+2x+1 viết phương trình tiếp tuyến của (c) biết tiếp tuyến đó cắt trục hoành, trục tung lần lượt tại Avà B sao cho tam giác OAB vuông cân (O là gốc toạ độ)
Cho hàm số: y = x3 - 3x2 + 2 (C)
Giả sử A(x0,y0) ∈ (C), tiếp tuyến tại A cắt đồ thị hàm số tại B. Tìm tọa độ B the x0
y = \(\dfrac{1}{8}x^4\) - \(\dfrac{7}{4}x^2\) (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại 2 điểm phân biệt M(x1;y1), N(x2;y2) (M, N khác A) thỏa mãn:
y1 - y2 = 3(x1 - x2)
Cho hàm số y= x3 -3x2+2 (C). Viết phương trình tiếp tuyến của (C)
a) tại giao điểm của (C) với trục Oy
b) biết tiếp tuyến song song với đường thẳng y=9x+2020
Viết phương trình tiếp tuyến :
a) Của hypebol \(y=\dfrac{x+1}{x-1}\) tại điểm \(A\left(2;3\right)\) ?
b) Của đường cong \(y=x^3+4x^2-1\) tại điểm có hoành độ \(x_0=-1\) ?
c) Của parabol \(y=x^2-4x+4\) tại điểm có tung độ \(y_0=1\)
Tìm hệ số góc của tiếp tuyến của đồ thị hàm số \(y=\tan x\) tại điểm có hoành độ \(x_0=\dfrac{\pi}{4}\)