Cho hai số dương x,y thoả mãn \(x\left(x^3+y^3\right)+6xy\left(x+y-2\right)=\left(x+y\right)^2\left(xy+4\right)\)
Tìm giá trị nhỏ nhất của biểu thức \(T=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+1\right)\)
Với hai số dương x, y thỏa mãn x + y = 2. Tìm giá trị lớn nhất của biểu thức:
\(T=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}+\sqrt{1+\frac{1}{y^2}+\frac{1}{\left(y+1\right)^2}}+\frac{4}{\left(x+1\right)\left(y+1\right)}\)
Cho x,y≠0 thỏa mãn: \(x^3+y^3+8=6xy\).
Tính giá trị của biểu thức: \(P=4\left(x+y\right)-\left(x+2\right)\left(\frac{2}{y}+1\right)\left(\frac{y}{x}+1\right)\)
Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z\le\frac{3}{2}\). Tìm GTNN của biểu thức:
\(P=\frac{x\left(yz+1\right)^2}{z^2_{ }\left(zx+1\right)}+\frac{y\left(zx+1\right)^2}{x^2\left(xy+1\right)}+\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}\)
1) Cho x,y,z là các số thực dương thỏa mãn x+y+z=1
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{x^2\left(y+z\right)}{yz}+\frac{y^2\left(z+x\right)}{zx}+\frac{z^2\left(x+y\right)}{xy}\)
2)Cho x>y và x+y≤1 .Tìm Min của A=\(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
cho x,y,z là các số dương thỏa mãn x3+y3+z3=8
tìm giá trị nhỏ nhất của biểu thức H=\(\frac{x^2+y^2}{xy\left(x+y\right)^3}+\frac{y^2+z^2}{yz\left(y+z\right)^3}+\frac{z^2+x^2}{zx\left(z+x\right)^3}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho x, y là 2 số dương thay đổi. Tìm giá trị nhỏ nhất của biểu thức:
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
cho hai số dương x,y có x+y=1
tìm giá trị nhỏ nhất của biểu thức M=\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)