a: Xét ΔOAH vuông tại H và ΔOBK vuông tại K có
OA=OB
góc O chung
=>ΔOAH=ΔOBK
b: OK+KA=OA
OH+HB=OB
mà OH=OK và OA=OB
nên AK=BH
c: Xét ΔOKI vuông tại K và ΔOHI vuông tại H có
OI chung
OK=OH
=>ΔOKI=ΔOHI
=>HI=KI
e: Xét ΔOBA có OK/OA=OH/OB
nên KH//AB
a: Xét ΔOAH vuông tại H và ΔOBK vuông tại K có
OA=OB
góc O chung
=>ΔOAH=ΔOBK
b: OK+KA=OA
OH+HB=OB
mà OH=OK và OA=OB
nên AK=BH
c: Xét ΔOKI vuông tại K và ΔOHI vuông tại H có
OI chung
OK=OH
=>ΔOKI=ΔOHI
=>HI=KI
e: Xét ΔOBA có OK/OA=OH/OB
nên KH//AB
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho
OA = OB. Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD với BC. Chứng minh: OE là tia phân giác của góc xOy.
Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho
OA = OB. Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho OC = OD.
a) Chứng minh: AD = BC.
b) Gọi E là giao điểm AD với BC. Chứng minh: OE là tia phân giác của góc xOy.
Cho tam giác ABC vuông tạ A. Kẻ đường cao AH. Từ H kẻ HI vuông góc với AB và HK vuông góc với AC.
1. Chứng minh HI vuông góc với HK.
2. Chứng minh IK = AH.
3. Gọi O là giao điểm của AH và IK. Chứng minh OI = OK = OA = OH.
4. Gọi M là trung điểm của cạnh huyền BC. Chứng minh AM vuông góc với KI.
Cho góc xOy, H là điểm nằm trên tia phân giác Oz. Một đường thẳng qua H vuông góc với Oz cắt Ox và Oy tại A và B.
b) Từ A kẻ AC // Oy, cắt Oz tại C. Chứng minh AC = OA
Cho góc xOy, H là điểm nằm trên tia phân giác Oz. Một đường thẳng qua H vuông góc với Oz cắt Ox và Oy tại A và B.
a) Chứng minh OA = OB;
b) Từ A kẻ AC // Oy, cắt Oz tại C. Chứng minh AC = AD.
cho góc nhọn xOy và M là một điểm thuộc tia phân giác của góc xOy kẻ MH vuông góc với Ox. h thuộc OX,MK vuông góc với Oy K thuộc Oy
Chứng minh tam giác omh bằng tam giác omk
Chứng minh tam giác HMK cân
khi góc xOy bằng 120 độ thì tam giác mhk là tam giác gì Vì sao
trả lời nhanh hộ em vs em phải nộp rồi ạ
Cho tam giácABC cân tại A, kẻ AH vuông góc với BC tại H. a) Chứng minh tam giacs AHB = ta mgiacs AHC, từ đó suy ra Half trung điểm của BC b) Trên tia đối của tia AB lấy điểm E sao cho AB = AE. Gọi G là giao điểm của AC và HE, I là giao điểm của BG và EC. Chứng minh I là trung điểm của EC và AI vuông góc với EC c) Chứng minh EC // AH
Cho tam giác DEF vuông tại D (DE< DF), tia phân giác của góc E cắt DF tại M. Trên tia đối của tia ME lấy điểm H sao cho ME = MH, từ điểm H vẽ đường thẳng vuông góc với DF tại N và cắt EF tại điểm K.
a) Chứng minh .
b) Chứng minh EK = HK.
c) Chứng minh rằng MN < MF.
Cho tam giác DEF cân tại D. I là trung điểm EF a) chứng minh DI là tia phân giác góc EDF b) từ I kẻ IN vuông góc DE; IN vuông góc DF Chứng minh tam giác IMN cân c) trên tia NI lấy điểm P sao cho IN=IP Chứng minh MP song song với DI