a: \(sina=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)
\(tana=\dfrac{2\sqrt{2}}{3}:\dfrac{1}{3}=2\sqrt{2}\)
b: \(1+tan^2a=\dfrac{1}{cos^2a}=1+4=5\)
=>cosa=1/căn 5
\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)
a: \(sina=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)
\(tana=\dfrac{2\sqrt{2}}{3}:\dfrac{1}{3}=2\sqrt{2}\)
b: \(1+tan^2a=\dfrac{1}{cos^2a}=1+4=5\)
=>cosa=1/căn 5
\(sina=\sqrt{1-\dfrac{1}{5}}=\dfrac{2}{\sqrt{5}}\)
TÍNH
a) A= tan 1 độ* tan 2 độ * tan 3 độ.....tan 89 độ
b) Cho góc nhọn α,tan α=\(\dfrac{1}{2}\) tính:
B=\(\dfrac{\sin\alpha+2\cos\alpha}{3\sin\alpha-4\cos\alpha}\)
D=\(\dfrac{2\sin^2\alpha-3\cos^2\alpha}{4\cos^2\alpha-5\sin^2\alpha}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
a, Cho cos α = 0,8. Hãy tính: sin α, tan α, cot α ?
b, Hãy tìm sin α, cos α, biết tan α = \(\frac{1}{3}\)
Hãy đơn giản các biểu thức:
a) 1-sin2α
b) (1-cosα)(1+cosα)
c) 1+cos2α+sin2α
d) sinα-sinα cos2α
e) sin4α+cos4α+2sin2α cos2α
f) tan2α-sin2α tan2α
g) cos2α+tan2α cos2α
h) tan2α (2cos2α+sin2α-1)
Tính E=\(\frac{8\cos^3\alpha-2\sin^3\alpha+\cos\alpha}{2cos\alpha-sin^3\alpha}\) khi tan α=2, góc α nhọn
Chứng minh:
a)\(cot^2\alpha-cos^2\alpha\cdot cot^2\alpha=cos^2\alpha\)
b)\(tan^2\alpha-sin^2\alpha\cdot tan^2\alpha=sin^2\alpha\)
c) \(\dfrac{1-cos^2}{sin\alpha}\) = \(\dfrac{sin\alpha}{1+cos\alpha}\)
d)\(tan^2\alpha-sin^2\alpha=tan^2\cdot sin^2\alpha\)
e) \(\sin^6\alpha+cos^6\alpha+3sin^2\cdot cos^2\alpha=1\)
1. cho x là góc nhọn, chứng minh \(\dfrac{1}{\sin^2}x\) - 1 = \(\dfrac{1}{\tan^2x}\)
2. cho \(\cos x=\dfrac{1}{3}\); tính giá trị của \(A=\dfrac{1}{\cot^2x}+1\)
3. đơn giản biểu thức: \(\tan^2\alpha-\sin^2\alpha.\tan^2\alpha\)
4.cho 00 < 900, c/m \(\dfrac{\sin^2\alpha-\cos^2\alpha+\cos^4\alpha}{\cos^2\alpha-\sin^2\alpha+\sin^4\alpha}=\tan^4\alpha\)
Sử dụng định nghĩa các tỉ số lượng giác của 1 góc nhọnđể chứng minh rằng:với mỗi góc nhọn α tùy ý ,ta có:
a,tan α=\(\frac{sin\alpha}{cos\alpha}\),cot α=\(\frac{cos\alpha}{sin\alpha}\),tan α.cot α=1
b,sin2α+cos2α=1
c,1+tan2α=\(\frac{1}{cos^2\alpha}\),1+cot2α=\(\frac{1}{sin^2\alpha}\)
Biết tan\(\alpha=3.\) Tính M =\(\frac{\sin\alpha.\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
Cho \(\tan\alpha=\frac{3}{5}\), hãy tính giá trị của:
a) \(M=\frac{\sin\alpha+\cos\alpha}{\sin\alpha-\cos\alpha}\)
b) \(N=\frac{\sin\alpha\cos\alpha}{\sin^2\alpha-\cos^2\alpha}\)
c) \(P=\frac{\sin^3\alpha+\cos^3\alpha}{2\sin\alpha\cos^2\alpha+\cos\alpha\sin^2\alpha}\)