Ta có:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=1+\frac{b+c}{a}+1+\frac{c+a}{b}+1+\frac{a+b}{c}\)
=2017.2018=4070306
=> A= \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=4070306-3=4070303