Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
DRACULA

Cho a,b,c > 0 . Chứng minh rằng: \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\right)\)

Y
19 tháng 5 2019 lúc 10:11

Theo BĐT AM-GM :

\(\sqrt{b}=\sqrt{b\cdot1}\le\frac{b+1}{2}\)

\(\Rightarrow\frac{a}{\sqrt{b}}\ge\frac{a}{\frac{b+1}{2}}=\frac{2a}{b+1}\)

Dấu "=" xảy ra \(\Leftrightarrow b=1\)

+ Tương tự ta cm đc :

\(\frac{b}{\sqrt{c}}\ge\frac{2b}{c+1}\). Dấu "=" xảy ra \(\Leftrightarrow c=1\)

\(\frac{c}{\sqrt{a}}\ge\frac{2c}{a+1}\). Dấu "=" xảy ra \(\Leftrightarrow a=1\)

Do đó : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge2\left(\frac{a}{b+1}+\frac{b}{c+}+\frac{c}{a+1}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)


Các câu hỏi tương tự
Lê Trường Lân
Xem chi tiết
Vua Phá Lưới
Xem chi tiết
Vũ Khánh Huyền
Xem chi tiết
Achana
Xem chi tiết
Thỏ bông
Xem chi tiết
Nguyễn Hoàng Vũ
Xem chi tiết
Tranh Diệp Phi
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Trần Bảo Hân
Xem chi tiết