Cho biểu thức: P = \(\left(\frac{2}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right).\frac{\sqrt{x}}{x+\sqrt{x}+2}\) với x >= 0 và x khác 1
Với giá trị nào của x thì P = \(\frac{1}{2}\)
1. Cho hai biểu thứ A=\(\frac{\sqrt{x}+3}{\sqrt{x}-1}\) và A = (\(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) với x >3, x ≠ 1.
a) Tính giá trị của biểu thức A khi x = 49
b) Rút gọn biểu thức V
c) Tìm x để \(\frac{B}{A}< \frac{3}{4}\)
2. Cho hai biểu thức A = \(\frac{\sqrt{x}}{1+3\sqrt{x}}\)và B=\(\frac{x+3}{x-9}+\frac{2}{\sqrt{x}+3}-\frac{1}{3-\sqrt{x}}\), với x>0, x ≠9
a) Tính giá trị biểu thức A khi x = \(\frac{4}{9}\)
b) Rút gọn biểu thức B
c) Cho P=B:A. Tìm x để P<3
Cho \(A=\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
a) ĐKXĐ , Rút Gọn
b)So sánh A với 1/A
Cho biểu thức: \(A=\left(1-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)Với:x\ge0,x\ne4,x\ne9\)
a) Rút gọn A
b) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
LÀM ƠN GIÚP MK VS!!!
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)
Nhìn bài toán xong còn bạn nào có thể làm cho mình ko
1. x=\(\sqrt{6+2\sqrt{2}\cdot\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-8\sqrt{2}}}}}-\sqrt{3}\)
2.Chứng minh: a + b + c = 2019 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2019\) thì 1 trong 3 số phải có 1 số bằng 2019
3. Giải
a, \(\left|x-2\right|\cdot\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x+2\right)=4\)
b, \(\frac{15x}{x^2-3x+4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
Cho bt:
P = \(\left(\frac{1}{\sqrt{x}+1}-\frac{x+2}{x\sqrt{x}+1}\right):\frac{2}{\sqrt{x}}\)
a) Rút gọn
b) CMR bt P luôn luôn âm với mọi x
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
Cho biểu thức E= \(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt[]{x}+3}\)
a, rút gọn E
b, Tìm x để E = 1/3
c, tìm GTLN của E